一、创建DataFrame和Dataset

1.1 创建DataFrame

Spark中所有功能的入口点是SparkSession,可以使用SparkSession.builder()创建。创建后应用程序就可以从现有RDD,Hive表或Spark数据源创建DataFrame。示例如下:

val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
val df = spark.read.json("/usr/file/json/emp.json")
df.show()

// 建议在进行spark SQL编程前导入下面的隐式转换,因为DataFrames和dataSets中很多操作都依赖了隐式转换
import spark.implicits._

可以使用spark-shell进行测试,需要注意的是spark-shell启动后会自动创建一个名为sparkSparkSession,在命令行中可以直接引用即可:

1.2 创建Dataset

Spark支持由内部数据集和外部数据集来创建DataSet,其创建方式分别如下:

1. 由外部数据集创建

// 1.需要导入隐式转换
import spark.implicits._

// 2.创建case class,等价于Java Bean
case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,
               hiredate: String, job: String, mgr: Long, sal: Double)

// 3.由外部数据集创建Datasets
val ds = spark.read.json("/usr/file/emp.json").as[Emp]
ds.show()

2. 由内部数据集创建

// 1.需要导入隐式转换
import spark.implicits._

// 2.创建case class,等价于Java Bean
case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,
               hiredate: String, job: String, mgr: Long, sal: Double)

// 3.由内部数据集创建Datasets
val caseClassDS = Seq(Emp("ALLEN", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0),
                      Emp("JONES", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0))
                    .toDS()
caseClassDS.show()

1.3 由RDD创建DataFrame

Spark支持两种方式把RDD转换为DataFrame,分别是使用反射推断和指定Schema转换:

1. 使用反射推断

// 1.导入隐式转换
import spark.implicits._

// 2.创建部门类
case class Dept(deptno: Long, dname: String, loc: String)

// 3.创建RDD并转换为dataSet
val rddToDS = spark.sparkContext
  .textFile("/usr/file/dept.txt")
  .map(_.split("\t"))
  .map(line => Dept(line(0).trim.toLong, line(1), line(2)))
  .toDS()  // 如果调用toDF()则转换为dataFrame

2. 以编程方式指定Schema

import org.apache.spark.sql.Row
import org.apache.spark.sql.types._

// 1.定义每个列的列类型
val fields = Array(StructField("deptno", LongType, nullable = true),
                   StructField("dname", StringType, nullable = true),
                   StructField("loc", StringType, nullable = true))

// 2.创建schema
val schema = StructType(fields)

// 3.创建RDD
val deptRDD = spark.sparkContext.textFile("/usr/file/dept.txt")
val rowRDD = deptRDD.map(_.split("\t")).map(line => Row(line(0).toLong, line(1), line(2)))

// 4.将RDD转换为dataFrame
val deptDF = spark.createDataFrame(rowRDD, schema)
deptDF.show()

1.4 DataFrames与Datasets互相转换

Spark提供了非常简单的转换方法用于DataFrame与Dataset间的互相转换,示例如下:

# DataFrames转Datasets
scala> df.as[Emp]
res1: org.apache.spark.sql.Dataset[Emp] = [COMM: double, DEPTNO: bigint ... 6 more fields]

# Datasets转DataFrames
scala> ds.toDF()
res2: org.apache.spark.sql.DataFrame = [COMM: double, DEPTNO: bigint ... 6 more fields]

二、Columns列操作

2.1 引用列

Spark支持多种方法来构造和引用列,最简单的是使用 col()column()函数。

col("colName")
column("colName")

// 对于Scala语言而言,还可以使用$"myColumn"和'myColumn这两种语法糖进行引用。
df.select($"ename", $"job").show()
df.select('ename, 'job).show()

2.2 新增列

// 基于已有列值新增列
df.withColumn("upSal",$"sal"+1000)
// 基于固定值新增列
df.withColumn("intCol",lit(1000))

2.3 删除列

// 支持删除多个列
df.drop("comm","job").show()

2.4 重命名列

df.withColumnRenamed("comm", "common").show()

需要说明的是新增,删除,重命名列都会产生新的DataFrame,原来的DataFrame不会被改变。

三、使用Structured API进行基本查询

// 1.查询员工姓名及工作
df.select($"ename", $"job").show()

// 2.filter 查询工资大于2000的员工信息
df.filter($"sal" > 2000).show()

// 3.orderBy 按照部门编号降序,工资升序进行查询
df.orderBy(desc("deptno"), asc("sal")).show()

// 4.limit 查询工资最高的3名员工的信息
df.orderBy(desc("sal")).limit(3).show()

// 5.distinct 查询所有部门编号
df.select("deptno").distinct().show()

// 6.groupBy 分组统计部门人数
df.groupBy("deptno").count().show()

四、使用Spark SQL进行基本查询

4.1 Spark SQL基本使用

// 1.首先需要将DataFrame注册为临时视图
df.createOrReplaceTempView("emp")

// 2.查询员工姓名及工作
spark.sql("SELECT ename,job FROM emp").show()

// 3.查询工资大于2000的员工信息
spark.sql("SELECT * FROM emp where sal > 2000").show()

// 4.orderBy 按照部门编号降序,工资升序进行查询
spark.sql("SELECT * FROM emp ORDER BY deptno DESC,sal ASC").show()

// 5.limit  查询工资最高的3名员工的信息
spark.sql("SELECT * FROM emp ORDER BY sal DESC LIMIT 3").show()

// 6.distinct 查询所有部门编号
spark.sql("SELECT DISTINCT(deptno) FROM emp").show()

// 7.分组统计部门人数
spark.sql("SELECT deptno,count(ename) FROM emp group by deptno").show()

4.2 全局临时视图

上面使用createOrReplaceTempView创建的是会话临时视图,它的生命周期仅限于会话范围,会随会话的结束而结束。

你也可以使用createGlobalTempView创建全局临时视图,全局临时视图可以在所有会话之间共享,并直到整个Spark应用程序终止后才会消失。全局临时视图被定义在内置的global_temp数据库下,需要使用限定名称进行引用,如SELECT * FROM global_temp.view1

// 注册为全局临时视图
df.createGlobalTempView("gemp")

// 使用限定名称进行引用
spark.sql("SELECT ename,job FROM global_temp.gemp").show()

参考资料

Spark SQL, DataFrames and Datasets Guide > Getting Started

更多大数据系列文章可以参见个人 GitHub 开源项目: 程序员大数据入门指南

Spark学习之路(九)—— Spark SQL 之 Structured API的更多相关文章

  1. [转]Spark学习之路 (三)Spark之RDD

    Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...

  2. Spark学习笔记2(spark所需环境配置

    Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后 ...

  3. Spark学习之路(十一)—— Spark SQL 聚合函数 Aggregations

    一.简单聚合 1.1 数据准备 // 需要导入spark sql内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSess ...

  4. Spark学习之路(八)—— Spark SQL 之 DataFrame和Dataset

    一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame AP ...

  5. Spark学习之路 (八)SparkCore的调优之开发调优

    摘抄自:https://tech.meituan.com/spark-tuning-basic.html 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark ...

  6. Spark学习之路 (八)SparkCore的调优之开发调优[转]

    前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...

  7. Spark学习之路 (一)Spark初识

    目录 一.官网介绍 1.什么是Spark 二.Spark的四大特性 1.高效性 2.易用性 3.通用性 4.兼容性 三.Spark的组成 四.应用场景 正文 回到顶部 一.官网介绍 1.什么是Spar ...

  8. Spark学习之路 (三)Spark之RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

  9. Spark学习之路 (二)Spark2.3 HA集群的分布式安装

    一.下载Spark安装包 1.从官网下载 http://spark.apache.org/downloads.html 2.从微软的镜像站下载 http://mirrors.hust.edu.cn/a ...

随机推荐

  1. 微信公众平台中临时二维码的scene_id为32位非0整型

    原文:微信公众平台中临时二维码的scene_id为32位非0整型                                        微信公众平台中临时二维码的scene_id为32位非0整 ...

  2. C# WPF 调用FFMPEG实现“SORRY 为所欲为/王境泽”表情包GIF生成软件

    C# WPF 调用FFMPEG实现“SORRY 为所欲为/王境泽”表情包GIF生成 1,调用ffmpeg将外挂字幕“嵌入”视频中,保存副本: 2,调用ffmpeg将副本视频导出为gif图片. 参考资料 ...

  3. bootstrap学习之路

    接触bootstrap也半年有余,从一开始不知道如何使用,到知道其各个模块的具体功能,再到提炼哪些使用的比较多,再此又体会到bootstrap源码的精髓,通过oocss写的类使其感觉更有易用性,开始本 ...

  4. python 教程 第四章、 控制流

    第四章. 控制流 控制语句后面要加冒号: 1)    if语句 if guess == number: print 'Congratulations, you guessed it.' # New b ...

  5. MySQL 日期时间 专题

    1.1 获得当前日期+时间(date + time)函数:now() 除了 now() 函数能获得当前的日期时间外,MySQL 中还有下面的函数: current_timestamp()   curr ...

  6. Java Class SecurityManager

    # 前言 简单了解 SecurityManager.具体查阅 API. # What 它是 Java 沙盒模型控制安全的重要一个环节.它是 Java 的一个类.下面一段话源于SecurityManag ...

  7. JavaScript 中的12种循环遍历方法

    原文:JavaScript 中的12种循环遍历方法 题目:请介绍 JavaScript 中有哪些循环和遍历的方法,说说它们的应用场景和优缺点? 1.for 循环 let arr = [1,2,3];f ...

  8. php如何去掉二维数组中重复的元素

    $arr=array( "1"=>array("a","b "), "2"=>array("a&q ...

  9. shell条件测试结构

    条件测试结构 if/then结构用来判断命令列表的退出状态码是否为0(因为在UNIX惯例, 0表示"成功"), 如果成功的话, 那么就执行接下来的一个或多个命令. 有一个专有命令[ ...

  10. Windows 10 (IIS 10)安装Microsoft Web Farm Framework Version 2.2 for IIS7问题

    But I got an error message "iis version 7.0 or greater is required to install Web Farm Framewor ...