Sumdiv(poj1845)
题意:求A^B的因子的和。
/*
首先将A分解 A=p1^a1*p2^a2*...*pn*an
A^B=p1^a1B*p2^a2B*...*pn*anB
因子之和sum=(1+p1+p1^2+...+p1^a1B)*...*(1+pn+pn^2+...+pn*anB)
套用等比数列的公式,再用逆元搞一下。
求逆元:(a/b)mod m=amod(bm)/b
*/
#include<cstdio>
#include<iostream>
#define N 10010
#define mod 9901
#define lon long long
using namespace std;
int prime[N],f[N],num;
void get_prime(){
for(int i=;i<N;i++){
if(!f[i]) prime[++num]=i;
for(int j=;j<=num;j++){
if(i*prime[j]>=N) break;
f[i*prime[j]]=;
if(i%prime[j]) break;
}
}
}
lon msm(lon A,lon B,lon MOD){
lon base=A,r=;
while(B){
if(B&) r=(r+base)%MOD;
base=(base+base)%MOD;
B>>=;
}
return r;
}
lon ksm(lon A,lon B,lon MOD){
lon base=A,r=;
while(B){
if(B&) r=msm(r,base,MOD);
base=msm(base,base,MOD);
B>>=;
}
return r;
}
void solve(lon A,lon B){
lon ans=;
for(int i=;prime[i]*prime[i]<=A;i++){
if(A%prime[i]==){
int num=;
while(A%prime[i]==){
num++;
A/=prime[i];
}
lon M=(prime[i]-)*mod;
ans*=(ksm(prime[i],num*B+,M)+M-)/(prime[i]-);
ans%=mod;
}
}
if(A>){
lon M=mod*(A-);
ans*=(ksm(A,B+,M)+M-)/(A-);
ans%=mod;
}
cout<<ans<<endl;
}
int main(){
lon A,B;
get_prime();
while(cin>>A>>B)
solve(A,B);
return ;
}
Sumdiv(poj1845)的更多相关文章
- POJ 1845 Sumdiv(逆元)
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点 1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...
- 【题解】POJ1845 Sumdiv(乘法逆元+约数和)
POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...
- 约数之和(POJ1845 Sumdiv)
最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...
- POJ 1845 Sumdiv (整数唯一分解定理)
题目链接 Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25841 Accepted: 6382 Desc ...
- POJ 1845 Sumdiv (整数拆分+等比快速求和)
当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...
- poj 1845 Sumdiv(约数和,乘法逆元)
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...
- POJ 1845 Sumdiv (数学,乘法逆元)
题意: 给出数字A和B,要求AB的所有因子(包括AB和1)之和 mod 9901 的结果. 思路: 即使知道公式也得推算一阵子. 很容易知道,先把分解得到,那么得到,那么的所有因子之和的表达式如下: ...
- acm数学(转)
这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...
- POJ 题目分类(转载)
Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...
随机推荐
- node入门(二)——gulpfile.js初探
本文关于gulpfile.js怎么写,利于完成个性化需求.本文开发环境默认已安装node,详情参考<node入门(一)——安装>. 一.安装gulp npm install -g gulp ...
- Java字符串操作方法集
常用Java字符串操作方法 String s="Hello" String s2="World" 操作 方法 使用方法 结果 字符串截取 substring ...
- iOS Programming Controlling Animations 动画
iOS Programming Controlling Animations 动画 The word "animation" is derived from a Latin wor ...
- nginx访问php程序相关配置
server { listen *:80; charset utf-8; server_name roujiaxiaomowang.wanghaokun.com mowang.crucco.com; ...
- QQ感叹号是什么鬼?原来是服务器波动,腾讯官方来辟谣了
今天晚上很多网友在用QQ发送消息的时候发现,自己发送的消息一直是感叹号❗到底是怎么回事呢?是消息都发不出去了吗?马浩周通过手机测试后发现,其实消息是可以发出去的,而官方手机QQ出来已经通知了,是服务器 ...
- OpenMP入门教程(二)
OpenMP API概述 OpenMP由三部分组成: 编译指令(19) 运行时库程序(32) 环境变量(9) 后来的API包含同样的三个组件,只是三者的数量都有所增加. 编译器指令 OpenMP编译器 ...
- 使用python划分数据集
无论是训练机器学习或是深度学习,第一步当然是先划分数据集啦,今天小白整理了一些划分数据集的方法,希望大佬们多多指教啊,嘻嘻~ 首先看一下数据集的样子,flower_data文件夹下有四个文件夹,每个文 ...
- 循环冗余校验(CRC)算法入门
http://blog.csdn.net/liyuanbhu/article/details/7882789 前言 CRC校验(循环冗余校验)是数据通讯中最常采用的校验方式.在嵌入式软件开发中,经常要 ...
- WebDAV协议
WebDAV是一项基于 Http1.1 协议的通信协议.它扩展了HTTP 1.1,在Get.Post.Put.Delete 等HTTP标准方法外添加了新方法,使应用程序可对Web Server直接读写 ...
- 【转】MFC 自定义edit 限制输入十六进制内容 响应复制粘贴全选剪切的功能
参考地址:MFC 自定义edit 限制输入内容 响应复制粘贴全选剪切的功能 Ctrl组合键ASCII码 ^Z代表Ctrl+z ASCII值 控制字符 AS ...