题意:求A^B的因子的和。

/*
首先将A分解 A=p1^a1*p2^a2*...*pn*an
A^B=p1^a1B*p2^a2B*...*pn*anB
因子之和sum=(1+p1+p1^2+...+p1^a1B)*...*(1+pn+pn^2+...+pn*anB)
套用等比数列的公式,再用逆元搞一下。
求逆元:(a/b)mod m=amod(bm)/b
*/
#include<cstdio>
#include<iostream>
#define N 10010
#define mod 9901
#define lon long long
using namespace std;
int prime[N],f[N],num;
void get_prime(){
for(int i=;i<N;i++){
if(!f[i]) prime[++num]=i;
for(int j=;j<=num;j++){
if(i*prime[j]>=N) break;
f[i*prime[j]]=;
if(i%prime[j]) break;
}
}
}
lon msm(lon A,lon B,lon MOD){
lon base=A,r=;
while(B){
if(B&) r=(r+base)%MOD;
base=(base+base)%MOD;
B>>=;
}
return r;
}
lon ksm(lon A,lon B,lon MOD){
lon base=A,r=;
while(B){
if(B&) r=msm(r,base,MOD);
base=msm(base,base,MOD);
B>>=;
}
return r;
}
void solve(lon A,lon B){
lon ans=;
for(int i=;prime[i]*prime[i]<=A;i++){
if(A%prime[i]==){
int num=;
while(A%prime[i]==){
num++;
A/=prime[i];
}
lon M=(prime[i]-)*mod;
ans*=(ksm(prime[i],num*B+,M)+M-)/(prime[i]-);
ans%=mod;
}
}
if(A>){
lon M=mod*(A-);
ans*=(ksm(A,B+,M)+M-)/(A-);
ans%=mod;
}
cout<<ans<<endl;
}
int main(){
lon A,B;
get_prime();
while(cin>>A>>B)
solve(A,B);
return ;
}

Sumdiv(poj1845)的更多相关文章

  1. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

  2. 【题解】POJ1845 Sumdiv(乘法逆元+约数和)

    POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...

  3. 约数之和(POJ1845 Sumdiv)

    最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...

  4. POJ 1845 Sumdiv (整数唯一分解定理)

    题目链接 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 25841   Accepted: 6382 Desc ...

  5. POJ 1845 Sumdiv (整数拆分+等比快速求和)

    当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...

  6. poj 1845 Sumdiv(约数和,乘法逆元)

    题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...

  7. POJ 1845 Sumdiv (数学,乘法逆元)

    题意: 给出数字A和B,要求AB的所有因子(包括AB和1)之和 mod 9901 的结果. 思路: 即使知道公式也得推算一阵子. 很容易知道,先把分解得到,那么得到,那么的所有因子之和的表达式如下: ...

  8. acm数学(转)

    这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...

  9. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

随机推荐

  1. 把List<Map<String,Object>>转成Map<String,Object>

    Map<String, Object> parmMap = new HashMap<String, Object>(); //定义一个用于存储强转后的Map List<M ...

  2. AJPFX关于Java Object类常用方法小总结

    java.lang.Object   java.lang包在使用的时候无需显示导入,编译时由编译器自动导入. Object类是类层次结构的根,Java中所有的类从根本上都继承自这个类. Object类 ...

  3. Caused by: javax.el.PropertyNotFoundException: Property 'product' not found on type java.lang.String

    今天在JSP利用EL表达式取值报了 "javax.el.PropertyNotFoundException”,经过debug和打印将问题定位到这段代码: HTML应该是没啥问题,看提示在ja ...

  4. poj2718 Smallest Difference

    思路: 暴力乱搞. 实现: #include <iostream> #include <cstdio> #include <sstream> #include &l ...

  5. 使用Jenkins进行android项目的自动构建(4)

    加入单元测试 android单元测试很多都是使用Instrumentation进行的,这里讲的是试用JUnit,为什么用JUnit呢?因为使用Instrumentation需要打包apk安装,然后再进 ...

  6. VBox虚拟机安装debian

    决定在win7上装一个Linux虚拟机用作Linux开发学习,虽然win7下已经有了Cygwin,还是想在一个比较完整的环境下.前面装过Ubuntu发现界面太笨重了,考虑重新换一个,同时比较喜欢apt ...

  7. mvc框架 与vuex的介绍

    应用级的状态集中放在store中: 改变状态的方式是提交mutations,这是个同步的事物: 异步逻辑应该封装在action中. const vuex_store = new Vuex.store( ...

  8. [转] 随机数是骗人的,.Net、Java、C为我作证

    (转自:随机数是骗人的,.Net.Java.C为我作证 - 杨中科   原文日期:2014.05.12) 几乎所有编程语言中都提供了"生成一个随机数"的方法,也就是调用这个方法会生 ...

  9. 洛谷 P2801 教主的魔法

    题目描述 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的身高一开始都是 ...

  10. spring springmvc 获取所有url

    @Autowired private RequestMappingHandlerMapping handlerMapping; @Test public void getAllApi() { Map& ...