http://acm.hdu.edu.cn/showproblem.php?pid=4549

f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p.....f[n] = a^fib[n-1] * b^fib[n-2]%p。



这里p是质数,且a,p互素,那么我们求a^b%p,当b非常大时要对b降幂。

由于a,p互素,那么由费马小定理知a^(p-1)%p = 1。令b = k*(p-1) + b'。a^b%p = a^(k*(p-1)+b')%p = a^(k*(p-1))%p * a^b'%p

= a^b'%p。

当中p' = b%(p-1)。

那么上题的fib[n-1]和fib[n-2]能够经过矩阵高速幂对(p-1)取模,实现降幂以后再用高速幂求得。

事实上a^b%c较一般的形式是a^(b%phi[c]+phi[c])%c (b>=phi[c]),在c是素数或a与c互素的时候能够简化为a^(b%(c-1))%c。



纳闷了一中午,结果把fib数列弄错了。f[0] = 0, f[1] = 1,f[n] = f[n-1]+f[n-2](n >= 2)。第0项是0,sad....

http://www.narutoacm.com/archives/a-pow-b-mod-m/

对大神表示深深的ym.

#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define _LL __int64
#define eps 1e-12
#define PI acos(-1.0)
#define C 240
#define S 20
using namespace std;
const int maxn = 110;
const int mod = 1000000007; struct matrix
{
LL mat[3][3];
void init()
{
memset(mat,0,sizeof(mat));
for(int i = 0; i < 2; i++)
mat[i][i] = 1;
}
}m; LL a,b,n; matrix mul_matrix(matrix x, matrix y)
{
matrix ans;
memset(ans.mat,0,sizeof(ans.mat));
for(int i = 0; i < 2; i++)
{
for(int k = 0; k < 2; k++)
{
if(x.mat[i][k] == 0) continue;
for(int j = 0; j < 2; j++)
ans.mat[i][j] = (ans.mat[i][j] + x.mat[i][k]*y.mat[k][j])%(mod-1);
}
}
return ans;
} matrix pow_matrix(matrix m, LL n)
{
matrix ans;
ans.init();
while(n)
{
if(n&1)
ans = mul_matrix(ans,m);
m = mul_matrix(m,m);
n >>= 1;
}
return ans;
} LL pow_mod(LL a, LL b)
{
LL res = 1;
a = a%mod;
while(b)
{
if(b&1)
res = res*a%mod;
a = a*a%mod;
b >>= 1;
}
return res;
} int main()
{ while(~scanf("%lld %lld %lld",&a,&b,&n))
{
m.mat[0][0] = m.mat[0][1] = m.mat[1][0] = 1;
m.mat[1][1] = 0;
if(n == 0)
{
printf("%lld\n",a%mod);
continue;
}
if(n == 1)
{
printf("%lld\n",b%mod);
continue;
}
else if(n == 2)
{
printf("%lld\n",a*b%mod);
continue;
}
matrix ans = pow_matrix(m,n);
LL res = pow_mod(a,ans.mat[1][1]) * pow_mod(b,ans.mat[0][1]) %mod;
printf("%lld\n",res);
}
return 0;
}

hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)的更多相关文章

  1. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

  2. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  3. [HDU 4549] M斐波那契数列

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  4. HDU 4549 M斐波那契数列(矩阵快速幂)

    题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...

  5. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  6. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  7. HDU 4549 M斐波那契数列(矩阵幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549 题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]. 思路:手算一下可以发现 ...

  8. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  9. HDU 1316 (斐波那契数列,大数相加,大数比较大小)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1316 Recall the definition of the Fibonacci numbers: ...

随机推荐

  1. dubbo之服务容器

    服务容器是一个standalone的启动程序,因为后台服务不需要Tomcat或JBoss等Web容器的功能,如果硬要用Web容器去加载服务提供方,增加复杂性,也浪费资源. 服务容器只是一个简单的Mai ...

  2. [oracle]表空间情况查看、占用、扩容、使用情况、空间维护等操作

    --查询表空间使用情况SELECT Upper(F.TABLESPACE_NAME)         "表空间名",       D.TOT_GROOTTE_MB          ...

  3. Python的伪造数据库:Faker

    faker 是一个可以让你生成伪造数据的Python包,在软件需求.开发.测试过程中常常需要利用一些假数据来做测试,这种时候就可以使用 Faker 来伪造数据从而用来测试. 一.Faker安装 pip ...

  4. document.write() 和 document.writeln区别

    document.write() 和 document.writeln 都是JavaScript向客户端写入的方法,writeln是以行方式输出的,但并不是指页面实际效果中的换行,两种方法在查看源代码 ...

  5. 获取最新ADT下载地址的方法

    最近网络不给力,谷歌上不去,想下个最新的ADT插件也难,于是寻找方法,最后找到一个不错的方法,问题解决过程如下(别嫌我啰嗦啊). 网上有人分享过下载ADT插件的页面地址:install-adt.htm ...

  6. 干货分享--iOS及Mac开源项目和学习资料【超级全面】

    原文出处:codecloud http://www.kancloud.cn/digest/ios-mac-study/84557

  7. Extjs获得组件值的方式

     Extjs中找Form,Extjs找组件的方式: 1,Extjs.getCmp 2,通过组件之间的关系,up,down 结论: 1,form.getValues()和form.getForm().g ...

  8. iview“官方“实现的右键菜单

    博客开篇,没想到第一篇博文竟然是前端的,虽略显尴尬,但正能量溢出,你我可能遇到同样问题,在这里分享下个人方案,希望对你有用. 官方目前不提供右键菜单,这里借助Dropdown(下拉菜单)来实现,故为“ ...

  9. 个人Linux(ubuntu)使用记录——更换软件源

    说明:记录自己的linux使用过程,并不打算把它当作一个教程,仅仅只是记录下自己使用过程中的一些命令,配置等东西,这样方便自己查阅,也就不用到处去网上搜索了,所以文章毫无章法可言,甚至会记录得很乱 s ...

  10. Ajax_使用 jQuery 实现Ajax

    [jQuery中的Ajax] 1.jQuery对Ajax操作进行了封装,在jQuery中最底层的方法时 $.ajax().第二层是 load() , $.get()  和 $.post(),第三层是 ...