【SCOI 2003】 严格n元树
【题目链接】
【算法】
f[i]表示深度小于等于i的严格n元树
显然,一棵深度小于等于i的严格n元树,就是一个根节点,下面有n棵子树,这n棵子树都是深度小于等于i-1的严格n元树,每棵子树有f[i-1]种形态,根据乘法原理,
可知f[i] = f[i-1] ^ n + 1
那么最后f[d] - f[d-1]就是答案
注意要用高精度计算
【代码】
#include<bits/stdc++.h>
using namespace std;
#define MAXN 35
#define MAXL 400 int i,n,d;
struct INT
{
int len;
int num[MAXL];
} ans,f[MAXN]; inline INT add(INT x)
{
int i;
reverse(x.num,x.num+x.len);
x.num[]++;
for (i = ; i < x.len; i++)
{
if (x.num[i] >= )
{
x.num[i+]++;
x.num[i] %= ;
}
}
while (x.num[x.len]) x.len++;
reverse(x.num,x.num+x.len);
return x;
}
inline void multipy(INT &a,INT b)
{
int i,j;
static INT res;
memset(res.num,,sizeof(res.num));
reverse(a.num,a.num+a.len);
reverse(b.num,b.num+b.len);
for (i = ; i < a.len; i++)
{
for (j = ; j < b.len; j++)
{
res.num[i+j] += a.num[i] * b.num[j];
}
}
res.len = a.len + b.len - ;
while (!res.num[res.len-]) res.len--;
for (i = ; i < res.len; i++)
{
if (res.num[i] >= )
{
res.num[i+] += res.num[i] / ;
res.num[i] %= ;
}
}
if (res.num[res.len]) res.len++;
reverse(res.num,res.num+res.len);
a = res;
}
inline INT _minus(INT a,INT b)
{
static INT res;
memset(res.num,,sizeof(res.num));
reverse(a.num,a.num+a.len);
reverse(b.num,b.num+b.len);
for (i = ; i < a.len; i++)
{
if (a.num[i] >= b.num[i]) res.num[i] = a.num[i] - b.num[i];
else
{
a.num[i+]--;
res.num[i] = a.num[i] + - b.num[i];
}
}
res.len = a.len;
while (!res.num[res.len-]) res.len--;
reverse(res.num,res.num+res.len);
return res;
}
inline INT power(INT a,int n)
{
INT res;
if (!n) return (INT){,{}};
if (n == ) return a;
res = power(a,n>>);
multipy(res,res);
if (n & ) multipy(res,a);
return res;
}
inline void output(INT x)
{
int i;
for (i = ; i < x.len; i++) printf("%d",x.num[i]);
puts("");
} int main()
{ scanf("%d%d",&n,&d);
f[] = (INT){,{}};
for (i = ; i <= d; i++) f[i] = add(power(f[i-],n));
ans = _minus(f[d],f[d-]);
output(ans); return ;
}
【SCOI 2003】 严格n元树的更多相关文章
- BZOJ 1089 (SCOI 2003) 严格n元树
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- BZOJ 1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1591 Solved: 795[Submit][Statu ...
- [BZOJ1089][SCOI2003]严格n元树(递推+高精度)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...
- 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...
- bzoj 1089 [SCOI2003]严格n元树(DP+高精度)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1250 Solved: 621[Submit][Statu ...
- BZOJ1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 762 Solved: 387[Submit][Status ...
- [BZOJ]1089 严格n元树(SCOI2003)
十几年前的题啊……果然还处于高精度遍地走的年代.不过通过这道题,小C想mark一下n叉树计数的做法. Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该 ...
- 【bzoj1089】严格n元树
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格 ...
- 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)
[BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...
随机推荐
- MT6755 使用R63350 IC 出现唤醒概率性闪白,并导致ESD FAIL
现象描述. 手机自动灭屏后按power键或home 键点亮屏幕,概率性上方有白色的一道,还会闪两三下屏.使用的LCM IC是:r63350, (FHD VDO)屏,附件为mtklog看看是什么原因? ...
- winrar5.0破解
RAR registration data Federal Agency for Education 1000000 PC usage license UID=b621cca9a84bc5deffbf ...
- js9:设置cookie,读取cookie,删除cookie,保存cookie时间,String,Date对象
原文发布时间为:2008-11-11 -- 来源于本人的百度文章 [由搬家工具导入] <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tran ...
- maven 编译出错 Failed to execute goal org.apache.maven.plugins:maven-clean-plugin:2.5:clean
eclipse在使用maven的tomcat控件编译java程序时,报错 Failed to execute goal org.apache.maven.plugins:maven-clean-plu ...
- msp430入门编程40
msp430中C语言的软件工程--前后台程序结构
- ESI 动态缓存技术[转载]
任何一个Web网站的内容都是在不断更新和变化,但这并不意味这这个网站的内容就是动态内容,事实上,动态的内容是指用户每次点击 相同的链接时取的的内容是由Web服务器应用程序生成的,如常见得ASP,JSP ...
- [Bzoj3611][Heoi2014]大工程(虚树)
3611: [Heoi2014]大工程 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 2000 Solved: 837[Submit][Status ...
- POJ 1724 【存在附加约束的最短路问题】【优先队列】
题意:给K个权值.给含有N个点,R条单向边的图. 每条边都有两个权值,其中一个路长,另外一个是附加权值. 要求路的附加权值之和不超过K的情况下求最短路. 思路: 自己的思路太狭隘,这题还是看了大牛的思 ...
- B/S(WEB)系统中使用Activex插件调用扫描仪实现连续扫描并上传图像(IE文件扫描并自动上传)
IE浏览器下使用Activex插件调用客户端扫描仪扫描文件并山传,可以将纸质档案(如合同.文件.资料等)扫描并将扫描图像保存到服务器,可以用于合同管理.档案管理等. 通过插件方式调用扫描仪扫描并获取图 ...
- 搜索引擎keyword智能提示的一种实现
问题背景 搜索关键字智能提示是一个搜索应用的标配.主要作用是避免用户输入错误的搜索词,并将用户引导到相应的关键词上,以提升用户搜索体验. 美团CRM系统中存在数以百万计的商家,为了让用户高速查找到目标 ...