题目描述

一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的。棍子可以被一台机器一个接一个地加工。机器处理一根棍子之前需要准备时间。准备时间是这样定义的:

第一根棍子的准备时间为1分钟;

如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间;

计算处理完n根棍子所需要的最短准备时间。比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(3, 5),(1, 4),最短准备时间为2(按(4, 9)、(3, 5)、(1, 4)、(5, 2)、(2, 1)的次序进行加工)。

输入输出格式

输入格式:

第一行是一个整数n(n<=5000),第2行是2n个整数,分别是L1,W1,L2,w2,…,Ln,Wn。L和W的值均不超过10000,相邻两数之间用空格分开。

输出格式:

仅一行,一个整数,所需要的最短准备时间。

输入输出样例

输入样例#1:

5
4 9 5 2 2 1 3 5 1 4
输出样例#1:

2
解题思路:
先将长度排序,再依次寻找宽度不上升序列,将它们全部标记,最后寻找没有被标记的。
AC代码:
 #include<cstdio>
#include<algorithm>
using namespace std;
int n,kk,ans;
struct kkk {
int c,k;//c表示木棍长,k表示木棍宽
}e[];
bool vis[];
bool cmp(kkk &a,kkk &b) {//先按从高到低排列长度,长度相同的按从高到低排列宽度
if(a.c == b.c) return a.k > b.k;
return a.c > b.c;
}
int main()
{
scanf("%d",&n);
for(int i = ;i <= n; i++)
scanf("%d%d",&e[i].c,&e[i].k);
sort(e+,e+n+,cmp);
for(int i = ;i <= n; i++)
if(!vis[i]) {//如果这个木棍被处理过就跳过
kk = e[i].k;//保存当前宽
for(int j = i + ;j <= n; j++) {
if(!vis[j] && e[j].k <= kk) {//如果有宽度小于现有宽度且没有被处理过
vis[j] = ;//处理
kk = e[j].k;//记录当前宽
}
}
}
for(int i = ;i <= n; i++)
if(!vis[i]) ans++;//记录有几个没被标记
printf("%d",ans);
return ;
}
 

洛谷 P1233 木棍加工的更多相关文章

  1. 洛谷 P1233 木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  2. 洛谷P1233 木棍加工【单调栈】

    题目:https://www.luogu.org/problemnew/show/P1233 题意: 有n根木棍,每根木棍有长度和宽度. 现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现 ...

  3. 洛谷P1233 [木棍加工]

    主要思路: 这道题一眼看过去就可以贪心.. 首先可以按L排序.. 显然排序之后我们就可以抛开L不管了.. 然后就可以愉快的贪心了.. 细节: 这道题可以看成用 最少的合法序列(详见原题) 装下所有木棍 ...

  4. 洛谷P1233 木棍加工题解 LIS

    突然发现自己把原来学的LIS都忘完了,正好碰见这一道题.|-_-| \(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法 ...

  5. 洛谷 P1233 木棍加工 题解

    题面 Dilworth定理:在数学理论中的序理论与组合数学中,Dilworth定理根据序列划分的最小数量的链描述了任何有限偏序集的宽度. 反链是一种偏序集,其任意两个元素不可比:而链则是一种任意两个元 ...

  6. 「洛谷P1233」木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  7. P1233 木棍加工

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  8. P1233木棍加工

    这个题被算法标签标为DP,但其实可能只是用dp求子序列,,(n方) 给出l与w,只要是l与w同时满足小于一个l与w,那么这个木棍不需要时间,反之需要1.看到这个题,首先想到了二维背包,然后发现没有最大 ...

  9. P1233 木棍加工 dp LIS

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

随机推荐

  1. 【(待重做)树状数组+dp+离散化】Counting Sequences

    https://www.bnuoj.com/v3/contest_show.php?cid=9149#problem/G [题意] 给定一个数组a,问这个数组有多少个子序列,满足子序列中任意两个相邻数 ...

  2. 删除右键open foler as pycharm project(WIN10)

    1.打开注册表(WIN+R 输入regedit) 2.找到 HKEY_CLASSES_ROOT\Directory\Background 路径 下找到Parcharm文件夹,删除,右键的open fo ...

  3. 封装java-get-post请求方式

    package com.ecar.eoc.content.platform.utils; import java.io.IOException;import java.util.HashMap;imp ...

  4. How many ways?? 矩阵快速幂 邻接矩阵意义

    春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室 ...

  5. POJ 3083_Children of the Candy Corn

    题意: 给定迷宫图,求出一个人从入口进,从出口出,所走过的最短路径以及分别沿着左手边和右手边的墙走出迷宫所走过的方格数. 分析: bfs求最短路 对于沿左右两边的墙走的情况,记录好行走的方向及相对应的 ...

  6. [bzoj2561]最小生成树_网络流_最小割_最小生成树

    最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...

  7. 消息队列RabbitMQ使用教程收集

    学习应该要系统,最好的方式是看书. RabbitMQ最权威的教程应该参考官方文档. 下面是收集的一些教程: 官方: https://www.rabbitmq.com/getstarted.html h ...

  8. no matching function transform?

    http://stackoverflow.com/questions/19876746/stdtolower-and-visual-studio-2013 http://forums.codeguru ...

  9. C++ auto 与 register、static keyword 浅析

    [register/auto的比較分析] #include <iostream> using namespace std; int main(){ int i,sum=0; for(i=0 ...

  10. 黑马day16 aptana插件的安装

    aptana: eclipse或者myeclipse中的javaScript,html,css的代码提示功能非常差...因此我们选择了这个框架. aptana的安装步骤: 1.须要下载aptana的插 ...