【问题描述】
小A 和小B 在做游戏。
他们找到了一个n 行m 列呈网格状的画板。小A 拿出了p 支不同颜色的画笔,开始在上面涂色。看到小A 涂好的画板,小B 觉得颜色太单调了,于是把画板擦干净,希望涂上使它看起来不单调的颜色(当然,每个格子里只能涂一种颜色)。小B 想知道一共有多少种不单调的涂色方案。我们定义一个涂色方案是不单调的,当且仅当任意相邻两列都出现了至少q 种颜色。

题解:

都能看出来这是道矩乘题。但是比较变态。

先不考虑矩阵,状态是f[ i ][ j ],指前i列已经填好,第i列共有j种不同颜色的方案数。

这里需要一个另外的g,用来算将j种颜色填入n个格子的方案数

先来看一下g:(我用的是容斥)

    for(int i=;i<=;i++)
{
g[i]=fast(i,n);//(快速幂)
for(int j=;j<i;j++)
{
g[i] = ((g[i] - g[j]*C[i][j]%MOD)%MOD+MOD)%MOD;
}
}

什么意思?

首先什么都不考虑,n个格子都有i种选择,得到i^n。

但是有个问题,就是原来让他有j种颜色,但是最终不够j。因此还要减掉g[ k ]*C[ j ][ k ]。

这样g就求完了。

然后就是状态转移方程了。

设前一列有k种颜色,当前列有j种颜色。

我分了几种情况:

1.k+j<q。这样无法转移……

2.k>=q或j>=q,这样当前列可以随便选,式子比较简单粗暴:

3.其他情况。这里需要枚举j中与k重合的有多少种。

最后转矩阵乘法。时间复杂度O(n^3*log m)。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MOD 998244353
#define ll long long
ll C[][],g[];
int n,m,p,q;
ll fast(ll x,int y)
{
ll ret = 1ll;
while(y)
{
if(y&)ret=ret*x%MOD;
x=x*x%MOD;
y>>=;
}
return ret;
}
struct mt
{
ll s[][];
}j0,j1;
mt operator * (mt a,mt b)
{
mt ret;
for(int i=;i<=p;i++)
{
for(int j=;j<=p;j++)
{
ret.s[i][j]=;
for(int k=;k<=p;k++)
{
(ret.s[i][j]+=a.s[i][k]*b.s[k][j]%MOD)%=MOD;
}
}
}
return ret;
}
void init()
{
C[][]=;
for(int i=;i<=;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
{
C[i][j]=(C[i-][j-]+C[i-][j])%MOD;
}
}
for(int i=;i<=;i++)
{
g[i]=fast(i,n);
for(int j=;j<i;j++)
{
g[i] = ((g[i] - g[j]*C[i][j]%MOD)%MOD+MOD)%MOD;
}
}
for(int j=;j<=p;j++)
{
for(int k=;k<=p;k++)
{
if(j+k<q)
{
j0.s[j][k]=;
}else
{
if(k<q&&j<q)
{
for(int x=max(q,j)-k;x<=j&&x+k<=p;x++)
{
(j0.s[j][k]+=C[k][j-x]*C[p-k][x]%MOD*g[j]%MOD)%=MOD;
}
}else
{
j0.s[j][k]=C[p][j]*g[j]%MOD;
}
}
}
}
for(int i=;i<=p;i++)j1.s[i][]=g[i]*C[p][i]%MOD;
}
mt fastt(mt x,int y)
{
mt ret;
ret=x;
y--;
while(y)
{
if(y&)ret=ret*x;
x=x*x;
y>>=;
}
return ret;
}
int main()
{
freopen("color.in","r",stdin);
freopen("color.out","w",stdout);
scanf("%d%d%d%d",&n,&m,&p,&q);
init();
mt ans = fastt(j0,m-);
ans = ans*j1;
ll as = ;
for(int i=;i<=p;i++)
as = (as+ans.s[i][])%MOD;
printf("%lld\n",as);
return ;
}

NOIp十连测 涂色游戏的更多相关文章

  1. hdu 4559 涂色游戏(SG)

    在一个2*N的格子上,Alice和Bob又开始了新游戏之旅. 这些格子中的一些已经被涂过色,Alice和Bob轮流在这些格子里进行涂色操作,使用两种涂色工具,第一种可以涂色任意一个格子,第二种可以涂色 ...

  2. [CSP-S模拟测试]:涂色游戏(DP+组合数+矩阵快速幂)

    题目描述 小$A$和小$B$在做游戏.他们找到了一个$n$行$m$列呈网格状的画板.小$A$拿出了$p$支不同颜色的画笔,开始在上面涂色.看到小$A$涂好的画板,小$B$觉得颜色太单调了,于是把画板擦 ...

  3. hdu 4559 涂色游戏(对SG函数的深入理解,推导打SG表)

    提议分析: 1 <= N <= 4747 很明显应该不会有规律的,打表发现真没有 按题意应该分成两种情况考虑,然后求其异或(SG函数性质) (1)找出单独的一个(一列中只有一个) (2)找 ...

  4. LYDSY模拟赛day3 涂色游戏

    /* 非常好的题 */ #include <cstdio> #include <iostream> #include <cstdlib> #include < ...

  5. 联赛模拟测试5 涂色游戏 矩阵优化DP

    题目描述 分析 定义出\(dp[i][j]\)为第\(i\)列涂\(j\)种颜色的方案数 然后我们要解决几个问题 首先是求出某一列涂恰好\(i\)种颜色的方案数\(d[i]\) 如果没有限制必须涂\( ...

  6. 【矩阵乘优化DP】涂色游戏

    题目大意 用 \(p\) 种颜色填 \(n\times m\) 的画板,要求任意相邻两列的颜色数都不少于 \(q\) ,求方案数. 数据范围 \(1\leq n\leq 100,1\leq m\leq ...

  7. hdu 4559 涂色游戏 博弈论

    构造SG函数:sg[i]表示2*i的sg值!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm ...

  8. [NOI Online #2 提高组]涂色游戏 题解

    题目描述 你有 1020 个格子,它们从 0 开始编号,初始时所有格子都还未染色,现在你按如下规则对它们染色: 编号是 p1 倍数的格子(包括 0号格子,下同)染成红色. 编号是 p2 倍数的格子染成 ...

  9. noip2016十连测round3

    A:平均数 题意:有一天,小 A 得到了一个长度为 n 的序列. 他把这个序列的所有连续子序列都列了出来,并对每一个子序列都求了其平均值,然后他把这些平均值写在纸上,并对它们进行排序,最后他报出了第 ...

随机推荐

  1. SQL Server 日期转换成字符串

    参考网址:http://wenku.baidu.com/view/970c6c1655270722192ef70e.html 下面是常用的几个 --返回06-27-13 ), ) --2013-06- ...

  2. P4949 最短距离(树链剖分+树状数组+基环树)

    传送门 一个中午啊-- 本来打算用仙人掌搞的,后来发现直接基环树就可以了,把多出来的那条边单独记录为\((dx,dy,dw)\),剩下的树剖 然后最短路径要么直接树上跑,要么经过多出来的边,分别讨论就 ...

  3. jQuery笔记之事件绑定

    .on(),off(),.one(),.trigger() .hover() jQuery实例方法-动画 .show(),.hide(),.toggle() 参数:null或(duration,eas ...

  4. jQuery html操作

    jQuery 拥有可操作 HTML 元素和属性的强大方法. jQuery DOM 操作 DOM = Document Object Model(文档对象模型) jQuery 中非常重要的部分,就是操作 ...

  5. [Usaco2005 Feb]Feed Accounting 饲料计算

    Description Farmer John is trying to figure out when his last shipment of feed arrived. Starting wit ...

  6. 递推DP UVA 590 Always on the run

    题目传送门 题意:题意难懂,就是一个小偷在m天内从城市1飞到城市n最小花费,输入的是每个城市飞到其他城市的航班. 分析:dp[i][j] 表示小偷第i天在城市j的最小花费.状态转移方程:dp[i][j ...

  7. synchronized(4)修饰语句块之:synchronized(this)

    synchronized(this) 此时,线程获得的是对象锁.例如: public class Thread8 extends Thread { public void sync_fun() { s ...

  8. spark调试环境搭建

    到目前为止,基于RDD的spark streamming实时应用和离线应用(主要解析日志)已经写了一些,但是对spark的了解还是很少,所以决心花点精力,对spark做一些比较深入的了解和学习.参照之 ...

  9. 移动端UI自动化Appium测试——Windows系统Appium环境配置

    1.安装JDK,官网下载即可,这里用的1.8,环境变量配置 2.安装Android sdk,API >= 17,环境变量配置 3.安装Nodejs,官网http://nodejs.org/dow ...

  10. Mac下部署与启动STF

    一.stf在Mac下的部署1.安装Java及jdk可自己谷歌(如果不能自建云梯)2.安装nodejs包(我是直接在官网下载的LTS版本) • Node.js v8.12.0 to /usr/local ...