居然扒到了学长出的题

和3944差不多(?),虽然一眼看上去很可怕但是仔细观察发现,对于mu来讲,答案永远是1(对于带平方的,mu值为0,1除外),然后根据欧拉筛的原理,\( \sum_{i=1}{n}\phi(i2)=\sum_{i=1}^{n}\phi(i)*i \),然后就可以正常推了:

\[g(n)=\sum_{i=1}^{n}i\sum_{d=1}^{i}[d|i]\phi(d)=\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}
\]

\[s(n)=\sum_{i=1}^{n}i\phi(i)
$$那么把g展开:
\]

g(n)=\sum_{i=2}{n}i\sum_{d=1}{i-1}[d|i]\phi(d)+s(n)

\[\]

s(n)=g(n)-\sum_{i=2}{n}i\sum_{d=1}{i-1}[d|i]\phi(d)

\[\]

=g(n)-\sum_{k=2}{n}k\sum_{d=1}{\left \lfloor \frac{n}{k} \right \rfloor}d\phi(d)

\[\]

=g(n)-\sum_{k=2}^{n}k*s(\left \lfloor \frac{n}{k} \right \rfloor)

\[\]

=\frac{n(n+1)(2n+1)}{6}-\sum_{k=2}^{n}k*s(\left \lfloor \frac{n}{k} \right \rfloor)

\[这就是标准的杜教筛递归子问题形式了,直接求解即可。
```cpp
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
using namespace std;
const int N=1000005,m=1000000,mod=1e9+7;
int phi[N],mi[N],q[N],tot,n,k,s[N],ans[N];
bool v[N];
map<long long,int>mp;
int S(int n,int l)
{
if(l<=1)
return phi[n*l];
if(n==1)
{
if(l<=m)
return s[l];
if(ans[k/l]!=-1)
return ans[k/l];
long long re=(long long)l*(l+1)/2%mod;
for(int i=2,la;i<=l;i=la+1)
{
la=l/(l/i);
if(l/i<=m)
re=(re-(long long)s[l/i]*(la-i+1)%mod)%mod;
else
re=(re-(long long)S(1,l/i)*(la-i+1)%mod)%mod;
}
return ans[k/l]=(re%mod+mod)%mod;
}
if(mp[(long long)n*mod+l])
return mp[(long long)n*mod+l];
long long re=0ll;
for(int i=1;i*i<=n;i++)
if(n%i==0)
{
re=(re+(long long)phi[n/i]*S(i,l/i)%mod)%mod;
if(i*i!=n)
re=re+(long long)phi[i]*S(n/i,l/(n/i))%mod;
}
return mp[(long long)n*mod+l]=(re%mod+mod)%mod;
}
// int S(int n,int l)
// {
// if (l<=1) return phi[n*l];
// if (n==1)
// {
// if (l<=m) return s[l];
// if (ans[k/l]!=-1) return ans[k/l];
// int re=(int)l*(l+1)/2%mod;
// for (int i=2,la;i<=l;i=la+1)
// {
// la=l/(l/i);
// if (l/i<=m) re=re-(int)(la-i+1)*s[l/i]%mod+mod;
// else re=re-(int)(la-i+1)*S(1,l/i)%mod+mod;
// }
// return ans[k/l]=re%mod;
// }
// else
// {
// if (mp[(int)n*mod+l]) return mp[(int)n*mod+l];
// int re=0;
// for (int i=1;i*i<=n;i++)
// if (n%i==0)
// {
// re=re+(int)phi[n/i]*S(i,l/i)%mod;
// if (i*i!=n) re=re+(int)phi[i]*S(n/i,l/(n/i))%mod;
// }
// return mp[(int)n*mod+l]=re%mod;
// }
// }
int main()
{
memset(ans,-1,sizeof(ans));
mi[1]=phi[1]=1;
for(int i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
phi[i]=i-1;
mi[i]=i;
}
for(int j=1;j<=tot&&i*q[j]<=m;j++)
{
int k=i*q[j];
v[k]=1;
if(i%q[j]==0)
{
phi[k]=phi[i]*q[j];
mi[k]=mi[i];
break;
}
phi[k]=phi[i]*(q[j]-1);
mi[k]=mi[i]*q[j];
}
}
for(int i=1;i<=m;i++)
s[i]=(s[i-1]+phi[i])%mod;
scanf("%lld%lld",&n,&k);
if(n>k)
swap(n,k);
long long ans=0ll;
for(int i=1;i<=n;i++)
ans=(ans+((long long)i/mi[i]*S(mi[i],k)%mod))%mod;
printf("%lld\n",(ans%mod+mod)%mod);
return 0;
}
```\]

bzoj 4916: 神犇和蒟蒻【欧拉函数+莫比乌斯函数+杜教筛】的更多相关文章

  1. [BZOJ 4916]神犇和蒟蒻

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  2. 【刷题】BZOJ 4916 神犇和蒟蒻

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  3. bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)

    题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...

  4. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  5. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  6. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  7. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

  8. 【BZOJ4805】欧拉函数求和(杜教筛)

    [BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...

  9. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

随机推荐

  1. ACM-ICPC 2018 焦作赛区网络预赛 H、L

    https://nanti.jisuanke.com/t/31721 题意 n个位置 有几个限制相邻的三个怎么怎么样,直接从3开始 矩阵快速幂进行递推就可以了 #include <bits/st ...

  2. Codeforces 659F Polycarp and Hay【BFS】

    有毒,自从上次选拔赛(哭哭)一个垃圾bfs写错之后,每次写bfs都要WA几发...好吧,其实也就这一次... 小白说的对,还是代码能力不足... 非常不足... 题目链接: http://codefo ...

  3. BZOJ——2563: 阿狸和桃子的游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2563 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit:  ...

  4. 洛谷—— P2802 回家

    P2802 回家 题目描述 小H在一个划分成了n*m个方格的长方形封锁线上. 每次他能向上下左右四个方向移动一格(当然小H不可以静止不动), 但不能离开封锁线,否则就被打死了. 刚开始时他有满血6点, ...

  5. MySql基本数据类型(转)

    说明:通俗的理解:1字节的8位,即1byte=8bit,而这个1byte叫做长度范围,范围的算法是使用bit去求,比如8bit的长度范围是2的8次方,但是在数据库中的类型上是有区分有符号和无符号的,默 ...

  6. 报错:An error occurred at line: 22 in the generated java file The method getJspApplicationContext(ServletContext) is undefined for the type JspFactory

    org.apache.jasper.JasperException: Unable to compile class for JSP: An error occurred at line: 22 in ...

  7. Org-mode五分钟教程ZZZ

    Table of Contents 1 源起 2 简介 2.1 获取 org-mode 2.2 安装 3 基础用法 3.1 创建一个新文件 3.2 简单的任务列表 3.3 使用标题组织一篇文章 3.4 ...

  8. TeamCity - Docker创建

    // 创建Server docker run -it --name teamcity-server-instance \-v /home/tc_datadir:/data/teamcity_serve ...

  9. Mockito的简单使用方法演示样例

    Mockito是一个流行的Mocking框架.它使用起来简单,学习成本非常低.并且具有非常简洁的API,測试代码的可读性非常高.因此它十分受欢迎,用 户群越来越多.非常多的开源的软件也选择了Mocki ...

  10. awk基本使用方法简单介绍

    之前说过sed, 今天来说awk, 它也是一个文本处理器. 是linux下的一个命令, 比sed更强大. 搞linux开发, 尤其是后台开发, 这个命令差点儿必需要用到. awk这三个字母分别代表其三 ...