k近邻优点:精度高、对异常值不敏感、无数据输入假定;
k近邻缺点:计算复杂度高、空间复杂度高 import numpy as np
import operator
from os import listdir # k近邻分类器
def classify0(inx, dataSet, labels, k):
dataSetSize = dataSet.shape[0] # 返回dataset第一维的长度,也就是行数
diffMat = np.tile(inx, (dataSetSize, 1))-dataSet # tile表示把inx行向量按列方向重复datasetsize次
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1) # 按列求和
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort() # 返回的是数组从小到大的索引值
classCount = {} # 定义一个空字典
for i in range(k):
voteLabel = labels[sortedDistIndicies[i]] # 返回前k个距离最小的样本的标签值
classCount[voteLabel] = classCount.get(voteLabel, 0)+1 # get 表示返回指定键的值
# lambda表示输入classCount返回冒号右边的值,reverse=True表示按照降序排列
sortedClassCount=sorted(classCount.items(), key=lambda classCount: classCount[1], reverse=True)
return sortedClassCount[0][0] # 把.txt文件转换成矩阵形式
def file2matrix(file):
file = open(file) # 返回文件对象
arr = file.readlines() # 返回全部行,是list形式,每一行为list的一个元素
number = len(arr) # 返回对象长度
returnMat = np.zeros((number,3))
index = 0
labelMat = []
for line in arr:
#line = line.strip('\n')
#newline = line.split(' ')
newline = line.strip('\n').split(' ') # 处理逐行数据,strip表示把头尾的'\n'去掉,split表示以空格来分割行数据
# 然后把处理后的行数据返回到newline列表中
returnMat[index,:] = newline[0:3] #表示列表的0,1,2列数据放到index行中
labelMat.append(int(newline[-1]))
index+=1
return returnMat,labelMat # 归一化
def autoNorm(dataSet):
minVals = dataSet.min(0) maxVals = dataSet.max(0)
ranges = maxVals-minVals
normDataSet = np.zeros(np.shape(dataSet))
m = normDataSet.shape[0]
A = normDataSet
A = np.tile(minVals, (m,1))
normDataSet = dataSet-A
normDataSet = normDataSet/np.tile(ranges,(m,1))
return normDataSet # 把图像转化成向量的形式
def img2vector(filename):
returnVect = np.zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline() # readline()表示从首行开始,每次读取一行
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j]) #int()函数用于将一个字符串或数字转换成整型
return returnVect # 一张图片转化成一行后的数组 # 手写数字识别系统的测试代码
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('E:/workspace/digits/trainingDigits')
m=len(trainingFileList)
trainingMat = np.zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i] # 例如9_45.txt
fileStr = fileNameStr.split('.')[0] # split('.')通过.分隔符对字符串进行切片
classNumStr = int(fileStr.split('_')[0]) # split('_')通过_分隔符对字符串进行切片
hwLabels.append(classNumStr)
trainingMat[i,:] =img2vector('E:/workspace/digits/trainingDigits/%s' % fileNameStr)
testFileList = listdir('E:/workspace/digits/testDigits')
mTest = len(testFileList)
errorCount = 0
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('E:/workspace/digits/testDigits/%s' % fileNameStr)
classResult = classify0(vectorUnderTest,trainingMat,hwLabels,3)
print('the classifier came back with: %d, the real answer is: %d' % (classResult,classNumStr))
if (classResult != classNumStr):
errorCount += 1.0
print('\n the total number of errors is: %d' % (errorCount))
print('\n the total error rate is: %f' % (errorCount/float(mTest))) handwritingClassTest()

机器学习_K近邻Python代码详解的更多相关文章

  1. 机器学习_决策树Python代码详解

    决策树优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据: 决策树缺点:可能会产生过度匹配问题. 决策树的一般步骤: (1)代码中def 1,计算给定数据集的香农熵: ...

  2. 机器学习-K近邻(KNN)算法详解

    一.KNN算法描述   KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近 ...

  3. 520表白小程序设计Python代码详解(PyQt5界面,B站动漫风)

    摘要:介绍一个动漫风的表白小程序,界面使用Python以及PyQt实现,界面样式经过多次美化调整,使得整体清新美观.本文详细介绍代码设计和实现过程,不仅是居家表白必备,而且适合新入门的朋友学习界面设计 ...

  4. python golang中grpc 使用示例代码详解

    python 1.使用前准备,安装这三个库 pip install grpcio pip install protobuf pip install grpcio_tools 2.建立一个proto文件 ...

  5. 第7.24节 Python案例详解:使用property函数定义属性简化属性访问代码实现

    第7.24节 Python案例详解:使用property函数定义属性简化属性访问代码实现 一.    案例说明 本节将通过一个案例介绍怎么使用property定义快捷的属性访问.案例中使用Rectan ...

  6. Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测

    Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggl ...

  7. Python闭包详解

    Python闭包详解 1 快速预览 以下是一段简单的闭包代码示例: def foo(): m=3 n=5 def bar(): a=4 return m+n+a return bar >> ...

  8. [转] Python Traceback详解

    追莫名其妙的bugs利器-mark- 转自:https://www.jianshu.com/p/a8cb5375171a   Python Traceback详解   刚接触Python的时候,简单的 ...

  9. Python 递归函数 详解

    Python 递归函数 详解   在函数内调用当前函数本身的函数就是递归函数   下面是一个递归函数的实例: 第一次接触递归函数的人,都会被它调用本身而搞得晕头转向,而且看上面的函数调用,得到的结果会 ...

随机推荐

  1. SPOJ 15. The Shortest Path 最短路径题解

    本题就是给出一组cities.然后以下会询问,两个cities之间的最短路径. 属于反复询问的问题,临时我仅仅想到使用Dijsktra+heap实现了. 由于本题反复查询次数也不多,故此假设保存全部最 ...

  2. c# Action,Func,Predicate委托

    System命名空间下已经预先定义好了三中泛型委托,Action,Func和Predicate,这样我们在编程的时候,就不必要自己去定义这些委托了 Action是没有返回值的 Func是带返回值的 不 ...

  3. YTU 2697: 血型统计

    2697: 血型统计 时间限制: 1 Sec  内存限制: 128 MB 提交: 405  解决: 164 题目描述 黑猫警长在犯罪现场发现了一些血迹,现已经委托检验机构确定了血型,需要统计各种血型的 ...

  4. 【Codeforces】665E Beautiful Subarrays

    E. Beautiful Subarrays time limit per test: 3 seconds memory limit per test: 512 megabytes input: st ...

  5. leetcode 690. Employee Importance——本质上就是tree的DFS和BFS

    You are given a data structure of employee information, which includes the employee's unique id, his ...

  6. mac系统下的常用命令

    这是我日常在mac下记录的一些常用终端命令: 1 java 2 javac 3 exit 4 /Users/lianxumac/Desktop/apktool1.5.2/反编译 ; exit; 5 / ...

  7. CodeFirst建模:DataAnotation

    示例一 新建一个控制台应用程序,并安装entityframework 新建一个文件Blog.cs类,输入以下代码: using System.ComponentModel.DataAnnotation ...

  8. maven仓库管理

    maven仓库管理很重要,如果是依赖jar下不到或下错了或出现莫名的报错.曾几何时为此花费了不少时间. 首先,注意自己maven仓库配置,里面有本地仓库目录和远程maven仓库,当自己本地没有依赖时可 ...

  9. vue实例以及生命周期

    1.Vue实例API 1.构造器(实例化) var vm = new Vue({ //选项 |-------DOM(3) |   |-------el (提供一个在页面上已存在的 DOM 元素作为 V ...

  10. 29. ExtJs - Struts2 整合(1) - 登录页面

    转自:https://yarafa.iteye.com/blog/729197 初学 ExtJS,在此记录下学习过程中的点点滴滴,以备不时只需,也希望能给跟我一样的菜鸟一些帮助,老鸟请忽略.如有不当之 ...