基于requests模块的cookie,session和线程池爬取

有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不到我们想要的目的,例如:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
if __name__ == "__main__": #张三人人网个人信息页面的url
url = 'http://www.renren.com/289676607/profile' #伪装UA
headers={
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
}
#发送请求,获取响应对象
response = requests.get(url=url,headers=headers)
#将响应内容写入文件
with open('./renren.html','w',encoding='utf-8') as fp:
fp.write(response.text)

基于requests模块的cookie操作

  • 结果发现,写入到文件中的数据,不是张三个人页面的数据,而是人人网登陆的首页面,why?首先我们来回顾下cookie的相关概念及作用:

    • cookie概念:当用户通过浏览器首次访问一个域名时,访问的web服务器会给客户端发送数据,以保持web服务器与客户端之间的状态保持,这些数据就是cookie。

    • cookie作用:我们在浏览器中,经常涉及到数据的交换,比如你登录邮箱,登录一个页面。我们经常会在此时设置30天内记住我,或者自动登录选项。那么它们是怎么记录信息的呢,答案就是今天的主角cookie了,Cookie是由HTTP服务器设置的,保存在浏览器中,但HTTP协议是一种无状态协议,在数据交换完毕后,服务器端和客户端的链接就会关闭,每次交换数据都需要建立新的链接。就像我们去超市买东西,没有积分卡的情况下,我们买完东西之后,超市没有我们的任何消费信息,但我们办了积分卡之后,超市就有了我们的消费信息。cookie就像是积分卡,可以保存积分,商品就是我们的信息,超市的系统就像服务器后台,http协议就是交易的过程。

  • 经过cookie的相关介绍,其实你已经知道了为什么上述案例中爬取到的不是张三个人信息页,而是登录页面。那应该如何抓取到张三的个人信息页呢?

  思路:

    1.我们需要使用爬虫程序对人人网的登录时的请求进行一次抓取,获取请求中的cookie数据

    2.在使用个人信息页的url进行请求时,该请求需要携带 1 中的cookie,只有携带了cookie后,服务器才可识别这次请求的用户信息,方可响应回指定的用户信息页数据

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
if __name__ == "__main__": #登录请求的url(通过抓包工具获取)
post_url = 'http://www.renren.com/ajaxLogin/login?1=1&uniqueTimestamp=201873958471'
#创建一个session对象,该对象会自动将请求中的cookie进行存储和携带
session = requests.session()
#伪装UA
headers={
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
}
formdata = {
'email': '17701256561',
'icode': '',
'origURL': 'http://www.renren.com/home',
'domain': 'renren.com',
'key_id': '1',
'captcha_type': 'web_login',
'password': '7b456e6c3eb6615b2e122a2942ef3845da1f91e3de075179079a3b84952508e4',
'rkey': '44fd96c219c593f3c9612360c80310a3',
'f': 'https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3Dm7m_NSUp5Ri_ZrK5eNIpn_dMs48UAcvT-N_kmysWgYW%26wd%3D%26eqid%3Dba95daf5000065ce000000035b120219',
}
#使用session发送请求,目的是为了将session保存该次请求中的cookie
session.post(url=post_url,data=formdata,headers=headers) get_url = 'http://www.renren.com/960481378/profile'
#再次使用session进行请求的发送,该次请求中已经携带了cookie
response = session.get(url=get_url,headers=headers)
#设置响应内容的编码格式
response.encoding = 'utf-8'
#将响应内容写入文件
with open('./renren.html','w') as fp:
fp.write(response.text)

基于requests模块的代理操作

  • 什么是代理?

    • 代理就是第三方代替本体处理相关事务。例如:生活中的代理:代购,中介,微商......
  • 爬虫中为什么需要使用代理?

    • 一些网站会有相应的反爬虫措施,例如很多网站会检测某一段时间某个IP的访问次数,如果访问频率太快以至于看起来不像正常访客,它可能就会会禁止这个IP的访问。所以我们需要设置一些代理IP,每隔一段时间换一个代理IP,就算IP被禁止,依然可以换个IP继续爬取。
  • 代理的分类:

    • 正向代理:代理客户端获取数据。正向代理是为了保护客户端防止被追究责任。

    • 反向代理:代理服务器提供数据。反向代理是为了保护服务器或负责负载均衡。

  • 免费代理ip提供网站

    • http://www.goubanjia.com/

    • 西祠代理

    • 快代理

        #!/usr/bin/env python
      # -*- coding:utf-8 -*-
      import requests
      import random
      if __name__ == "__main__":
      #不同浏览器的UA
      header_list = [
      # 遨游
      {"user-agent": "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Maxthon 2.0)"},
      # 火狐
      {"user-agent": "Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1"},
      # 谷歌
      {
      "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11"}
      ]
      #不同的代理IP
      proxy_list = [
      {"http": "112.115.57.20:3128"},
      {'http': '121.41.171.223:3128'}
      ]
      #随机获取UA和代理IP
      header = random.choice(header_list)
      proxy = random.choice(proxy_list) url = 'http://www.baidu.com/s?ie=UTF-8&wd=ip'
      #参数3:设置代理
      response = requests.get(url=url,headers=header,proxies=proxy)
      response.encoding = 'utf-8' with open('daili.html', 'wb') as fp:
      fp.write(response.content)
      #切换成原来的IP
      requests.get(url, proxies={"http": ""})

基于multiprocessing.dummy线程池的数据爬取

  • 需求:爬取梨视频的视频信息,并计算其爬取数据的耗时

    • 普通爬取

        %%time
      import requests
      import random
      from lxml import etree
      import re
      from fake_useragent import UserAgent
      #安装fake-useragent库:pip install fake-useragent
      url = 'http://www.pearvideo.com/category_1'
      #随机产生UA,如果报错则可以添加如下参数:
      #ua = UserAgent(verify_ssl=False,use_cache_server=False).random
      #禁用服务器缓存:
      #ua = UserAgent(use_cache_server=False)
      #不缓存数据:
      #ua = UserAgent(cache=False)
      #忽略ssl验证:
      #ua = UserAgent(verify_ssl=False) ua = UserAgent().random
      headers = {
      'User-Agent':ua
      }
      #获取首页页面数据
      page_text = requests.get(url=url,headers=headers).text
      #对获取的首页页面数据中的相关视频详情链接进行解析
      tree = etree.HTML(page_text)
      li_list = tree.xpath('//div[@id="listvideoList"]/ul/li')
      detail_urls = []
      for li in li_list:
      detail_url = 'http://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
      title = li.xpath('.//div[@class="vervideo-title"]/text()')[0]
      detail_urls.append(detail_url)
      for url in detail_urls:
      page_text = requests.get(url=url,headers=headers).text
      vedio_url = re.findall('srcUrl="(.*?)"',page_text,re.S)[0] data = requests.get(url=vedio_url,headers=headers).content
      fileName = str(random.randint(1,10000))+'.mp4' #随机生成视频文件名称
      with open(fileName,'wb') as fp:
      fp.write(data)
      print(fileName+' is over')
    • 基于线程池的爬取

        %%time
      import requests
      import random
      from lxml import etree
      import re
      from fake_useragent import UserAgent
      #安装fake-useragent库:pip install fake-useragent
      #导入线程池模块
      from multiprocessing.dummy import Pool
      #实例化线程池对象
      pool = Pool()
      url = 'http://www.pearvideo.com/category_1'
      #随机产生UA
      ua = UserAgent().random
      headers = {
      'User-Agent':ua
      }
      #获取首页页面数据
      page_text = requests.get(url=url,headers=headers).text
      #对获取的首页页面数据中的相关视频详情链接进行解析
      tree = etree.HTML(page_text)
      li_list = tree.xpath('//div[@id="listvideoList"]/ul/li') detail_urls = []#存储二级页面的url
      for li in li_list:
      detail_url = 'http://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
      title = li.xpath('.//div[@class="vervideo-title"]/text()')[0]
      detail_urls.append(detail_url) vedio_urls = []#存储视频的url
      for url in detail_urls:
      page_text = requests.get(url=url,headers=headers).text
      vedio_url = re.findall('srcUrl="(.*?)"',page_text,re.S)[0]
      vedio_urls.append(vedio_url)
      #使用线程池进行视频数据下载
      func_request = lambda link:requests.get(url=link,headers=headers).content
      video_data_list = pool.map(func_request,vedio_urls)
      #使用线程池进行视频数据保存
      func_saveData = lambda data:save(data)
      pool.map(func_saveData,video_data_list)
      def save(data):
      fileName = str(random.randint(1,10000))+'.mp4'
      with open(fileName,'wb') as fp:
      fp.write(data)
      print(fileName+'已存储') pool.close()
      pool.join()

基于requests模块的cookie,session和线程池爬取的更多相关文章

  1. 使用requests、re、BeautifulSoup、线程池爬取携程酒店信息并保存到Excel中

    import requests import json import re import csv import threadpool import time, random from bs4 impo ...

  2. Python+Requests+异步线程池爬取视频到本地

    1.本次项目为获取梨视频中的视频,再使用异步线程池下载视频到本地 2.获取视频时,其地址中的Url是会动态变化,不播放时src值为图片的地址,播放时src值为mp4格式 3.查看视频链接是否存在aja ...

  3. 使用requests、BeautifulSoup、线程池爬取艺龙酒店信息并保存到Excel中

    import requests import time, random, csv from fake_useragent import UserAgent from bs4 import Beauti ...

  4. requests模块处理cookie,代理ip,基于线程池数据爬取

    引入 有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不到我们想要的目的. 一.基于requests模块 ...

  5. requests模块的cookie和代理操作

    一.基于requests模块的cookie操作 引言:有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不 ...

  6. 爬虫开发5.requests模块的cookie和代理操作

    代理和cookie操作 一.基于requests模块的cookie操作 引言:有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests ...

  7. 25-3 requests模块的cookie和代理操作

    一.基于requests模块的cookie操作 引言:有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不 ...

  8. python 爬虫 基于requests模块发起ajax的post请求

    基于requests模块发起ajax的post请求 需求:爬取肯德基餐厅查询http://www.kfc.com.cn/kfccda/index.aspx中指定某个城市地点的餐厅数据 点击肯德基餐厅查 ...

  9. python 爬虫 基于requests模块发起ajax的get请求

    基于requests模块发起ajax的get请求 需求:爬取豆瓣电影分类排行榜 https://movie.douban.com/中的电影详情数据 用抓包工具捉取 使用ajax加载页面的请求 鼠标往下 ...

随机推荐

  1. NoSql的易扩展性

    NoSql现在很火很时髦,大家言必称NoSql,仿佛关系型数据库已成陈旧落后的代名词. 但依我看,真正理解NoSql的还不多,在实际项目中用过的应该就更少了. 我也还不理解,更没怎么应用过,所以现在要 ...

  2. 算法题:打印1到最大的n位数

    说明:本文仅供学习交流,转载请标明出处,欢迎转载!        今天看到剑指offer上的第12题,题目例如以下:        输入数字n.按顺序打印出从1到最大的n位十位数. 比方输入3,则打印 ...

  3. SPOJ XMAX - XOR Maximization

    XMAX - XOR Maximization Given a set of integers S = { a1, a2, a3, ... a|S| }, we define a function X ...

  4. kentico11 教程,

    create master page with css list menu Add the navigation menu Add a dynamic web part that will repre ...

  5. LCT教程

    lct是一种动态树,用来维护一些动态加边删边的操作的东西.他主要用到几个操作,其实这个算法和树链刨分有点像,但是不能用线段树简单维护,所以我们要用多棵平衡树来维护树上的一个个子树,然后就进行一些很秀的 ...

  6. bzoj2242 [SDOI2011]计算器——BSGS

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一次写BSGS,参考了好多好多博客: 然而看到的讲解和模板是一种写法,这道题的网上题 ...

  7. PCB MongoDB 监控

    一个数据库监控工具是必不可少的,当然MongoDB安装自带监控啦. 这里将监控工具mongostat.exe与mongotop.exe使用与参数进行讲解说明. 一.监控工具说明: 二.监控工具启用 1 ...

  8. bzoj题目分类

    转载于http://blog.csdn.net/creationaugust/article/details/513876231000:A+B 1001:平面图最小割,转对偶图最短路 1002:矩阵树 ...

  9. [Swift通天遁地]六、智能布局-(8)布局框架的使用:多分辨率适配和横竖屏布局

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  10. Java中多个线程交替循环执行

    有些时候面试官经常会问,两个线程怎么交替执行呀,如果是三个线程,又怎么交替执行呀,这种问题一般人还真不一定能回答上来.多线程这块如果理解的不好,学起来是很吃力的,更别说面试了.下面我们就来剖析一下怎么 ...