POJ2516 Minimum Cost —— 最小费用最大流
题目链接:https://vjudge.net/problem/POJ-2516
| Time Limit: 4000MS | Memory Limit: 65536K | |
| Total Submissions: 17650 | Accepted: 6205 |
Description
It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.
Input
Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.
The input is terminated with three "0"s. This test case should not be processed.
Output
Sample Input
1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0
Sample Output
4
-1
Source
题意:
有n个商店,m个仓库,k中商品。每个商店对每种商品都有特定需求量,且每个仓库中,每种商品都有其特定的存量。且已知对于某一种商品G,从仓库A运送一件商品G到商店B的运费。问:能否满足所有商店的供货需求?如果能满足,求出最小总运费?
题解:
最小费用最大流问题。可知每一种商品是相互独立的,因此我们可以单独求出每种商品总的最小运费,然后加起来,当然前提条件是能满足需求。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e4+;
const int MAXN = 1e2+; struct Edge
{
int to, next, cap, flow, cost;
}edge[MAXM<<];
int tot, head[MAXN];
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N; void init(int n)
{
N = n;
tot = ;
memset(head, -, sizeof(head));
} void add(int u, int v, int cap, int cost)
{
edge[tot].to = v; edge[tot].cap = cap; edge[tot].cost = cost;
edge[tot].flow = ; edge[tot].next = head[u]; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].cost = -cost;
edge[tot].flow = ; edge[tot].next = head[v]; head[v] = tot++;
} bool spfa(int s, int t)
{
queue<int>q;
for(int i = ; i<N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
} dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap>edge[i].flow && dis[v]>dis[u]+edge[i].cost)
{
dis[v] = dis[u]+edge[i].cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
} int minCostMaxFlow(int s, int t, int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min = edge[i].cap-edge[i].flow;
}
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost*Min;
}
flow += Min;
}
return flow;
} int need[][], storage[][], fee[][][];
int main()
{
int n, m, k;
while(scanf("%d%d%d",&n,&m,&k)&&(n||m||k))
{
for(int i = ; i<=n; i++)
for(int j = ; j<=k; j++)
scanf("%d", &need[i][j]); for(int i = ; i<=m; i++)
for(int j = ; j<=k; j++)
scanf("%d", &storage[i][j]); for(int i = ; i<=k; i++)
for(int j = ; j<=n; j++)
for(int t = ; t<=m; t++)
scanf("%d", &fee[i][j][t]); int cost = ;
for(int item = ; item<=k; item++)
{
int whole = ;
for(int i = ; i<=n; i++)
whole += need[i][item]; int start = , end = n+m+;
init(n+m+);
for(int i = ; i<=m; i++)
{
add(start, i, storage[i][item], );
for(int j = ; j<=n; j++)
// if(storage[i][item]>=need[j][item]) //不能加此条判断
add(i, m+j, storage[i][item], fee[item][j][i]);
} for(int i = ; i<=n; i++)
add(m+i, end, need[i][item], ); int cost_item;
int offered = minCostMaxFlow(start, end, cost_item);
if(offered<whole)
{
cost = -;
break;
}
else cost += cost_item;
}
printf("%d\n", cost);
}
}
POJ2516 Minimum Cost —— 最小费用最大流的更多相关文章
- POJ2516:Minimum Cost(最小费用最大流)
Minimum Cost Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 19088 Accepted: 6740 题目链 ...
- Minimum Cost(最小费用最大流)
Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...
- POJ 2516 Minimum Cost [最小费用最大流]
题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...
- Poj 2516 Minimum Cost (最小花费最大流)
题目链接: Poj 2516 Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...
- POJ2516 Minimum Cost(最小费用最大流)
一开始我把每个店主都拆成k个点,然后建图..然后TLE.. 看题解= =哦,愚钝了,k个商品是独立的,可以分别跑k次最小费用最大流,结果就是k次总和.. #include<cstdio> ...
- POJ2516 Minimum Cost【最小费用最大流】
题意: 有N个客户,M个仓库,和K种货物.已知每个客户需要每种货物的数量,每个仓库存储每种货物的数量,每个仓库运输各种货物去各个客户的单位费用.判断所有的仓库能否满足所有客户的需求,如果可以,求出最少 ...
- POJ 2516 Minimum Cost (最小费用最大流)
POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...
- poj-2516.minimum cost(k次费用流)
Minimum Cost Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 19883 Accepted: 7055 Des ...
- POJ - 2516 Minimum Cost(最小费用最大流)
1.K种物品,M个供应商,N个收购商.每种物品从一个供应商运送到一个收购商有一个单位运费.每个收购商都需要K种物品中的若干.求满足所有收购商需求的前提下的最小运费. 2.K种物品拆开来,分别对每种物品 ...
随机推荐
- LoadBitmap(IDB_BITMAP1) -- 未定义标识符 IDB_BITMAP1
错误原因:1:头文件没有加入 #include"resource.h" 2:没有导入该资源或者资源ID错误
- TYVJ3680 找妹子
时间: 1000ms / 空间: 1200KiB / Java类名: Main 背景 本题由 @fjzzq2002 提供,已奖励20金币. 描述 sps是zzq的好伙伴. sps一天叫来了许多个妹子. ...
- K大数查询 BZOJ 3110
K大数查询 [问题描述] 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- msp430项目编程43
msp430综合项目---蓝牙控制直流电机调速系统43 1.电路工作原理 2.代码(显示部分) 3.代码(功能实现) 4.项目总结
- C++ assert 的一点说明
断言(ASSERT)的用法 转载自http://www.cnblogs.com/moondark/archive/2012/03/12/2392315.html 我一直以为assert仅仅是个报错函数 ...
- css3 画三角形
/*箭头向上*/ .arrow-up { width:0; height:0; border-left:20px solid transparent; border-right:20px solid ...
- profile, bashrc, source, setup.*sh
一. source: 命令是使该文件立刻执行,这样刚才做的修改就可以立即生效了,否则要重新启动系统修改才能生效.(执行其后命令使之立即生效,不用重启) 二.bashrc: 1.linux系统:/etc ...
- java集合系列之ArrayList源码分析
java集合系列之ArrayList源码分析(基于jdk1.8) ArrayList简介 ArrayList时List接口的一个非常重要的实现子类,它的底层是通过动态数组实现的,因此它具备查询速度快, ...
- LSTM网络
http://colah.github.io/posts/2015-08-Understanding-LSTMs/ https://www.jianshu.com/p/9dc9f41f0b29 机器学 ...
- 【转】 nginx rewrite 伪静态配置参数详细说明
nginx rewrite 伪静态配置参数和使用例子 附正则使用说明 正则表达式匹配,其中: * ~ 为区分大小写匹配 * ~* 为不区分大小写匹配 * !~和!~*分别为区分大小写不匹配及不区分 ...