Description

背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。

Input

一个正整数 N。

Output

一个数,答案模 10000007 的值。

Sample Input

样例输入一
3

Sample Output

样例输出一
2

HINT

对于样例一,1*1*2=2;

数据范围与约定

对于 100% 的数据,N≤10^15

思路:数位dp,计算小于n并且sum(i)=k的i有多少个,设为u,则答案为pow(k,u),然后枚举k即可

#include<cstdio>

#include<iostream>

#include<cstring>

#include<map>

#define maxn 1000005

#define MOD 10000007

using namespace std;

long long num[maxn],h=0,dp[100][100][100][2];

long long dfs(long long pos,long long need,long long now,long long limit)

{

if(pos==0)return now==need;

int tmp=limit?num[pos]:1;

long long ans=0;

if(!limit&&dp[pos][need][now][limit]!=-1)

return dp[pos][need][now][limit];

for(int i=0;i<=tmp;i++)

{

ans=(ans+dfs(pos-1,need,now+i,limit&&(i==tmp)));

}

if (!limit)

dp[pos][need][now][limit]=ans;

return ans;

}

long long mpow(long long a,long long n)

{

long long ans=1;

a%=MOD;

while (n)

{

if (n%2) ans=(ans%MOD)*(a%MOD)%MOD;

n/=2;

a=(a%MOD)*(a%MOD)%MOD;

}

return ans;

}

int main()

{

long long n;

memset(dp,-1,sizeof(dp));

while(scanf("%lld",&n)!=EOF)

{

long long ans=1;h=0;

if(n==0){printf("0\n");continue;}

while(n>0){num[++h]=n&1;n>>=1;}

for(int i=1;i<=h;i++)

{

long long u=dfs(h,i,0,1);

long long v=mpow((long long)i,u%9988440+9988440);

ans=((ans%MOD)*(v%MOD))%MOD;

if(ans==6296768)

{

int zz=1;

}

}

printf("%lld\n",ans);

}

return 0;

}

BZOJ 3209: 花神的数论题【数位dp】的更多相关文章

  1. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  2. bzoj 3209 花神的数论题 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...

  3. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

  4. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  5. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  6. bzoj 3209 花神的数论题——二进制下的数位dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...

  7. [数位dp] bzoj 3209 花神的数论题

    题意:中文题. 思路:和普通数位dp一样,这里转换成二进制,然后记录有几个一. 统计的时候乘起来就好了. 代码: #include"cstdlib" #include"c ...

  8. [BZOJ 3209] 花神的数论题 【数位统计】

    题目链接: BZOJ - 3209 题目大意 设 f(x) 为 x 的二进制表示中 1 的个数.给定 n ,求 ∏ f(i)     (1 <= i <= n) . 题目分析 总体思路是枚 ...

  9. bzoj3209 花神的数论题——数位dp

    题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...

随机推荐

  1. github小技巧之Creating a pull request 创建 pull 请求

    创建一个 pull 请求是为了协作更改存储库.这些变化会产生一个分支,它确保主分支保持干净整洁. 与commits提交是不同的,提交是fork之后的一种操作. 在你可以打开一个 pull 请求之前,您 ...

  2. iOS Block的本质(二)

    iOS Block的本质(二) 1. 介绍引入block本质 通过上一篇文章Block的本质(一)已经基本对block的底层结构有了基本的认识,block的底层就是__main_block_impl_ ...

  3. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  4. Codeforces Round #316 (Div. 2) C Replacement 扫描法

    先扫描一遍得到每个位置向后连续的'.'的长度,包含自身,然后在扫一遍求出初始的合并次数. 对于询问,只要对应位置判断一下是不是'.',以及周围的情况. #include<bits/stdc++. ...

  5. 转义字符 & sizeof & strlen

    在定义了数组大小时: sizeof是运算符,表示编译时分配的空间大小,即数组定义的大小,char t[20] = "sfa".sizeof: 20; strlen: 3.在未定义数 ...

  6. shell脚本,锁机制

    [root@localhost wyb]# cat suijizhi.sh #!/bin/bash a=`|grep -v grep |wc -l` echo "$a" [ $a ...

  7. 830. Positions of Large Groups@python

    In a string S of lowercase letters, these letters form consecutive groups of the same character. For ...

  8. ES6变量解构赋值的用法

    一.数组赋值(从数组中提取值,按照对应位置,对变量赋值) 1. 完全解构(变量与值数目相等) let arr = [1, 2, 3]; let [a,b,c] = arr; console.log(a ...

  9. MySQL中日期函数的使用

    1. MySQL中日期函数的使用 1.1. 转DATETIME类型为Date类型 将add_time ::56转化为date类型 select * from product where Date(ad ...

  10. Python内置方法详解

    1. 字符串内置方法详解 为何要有字符串?相对于元组.列表等,对于唯一类型的定义,字符串具有最简单的形式. 字符串往往以变量接收,变量名. 可以查看所有的字符串的内置方法,如: 1> count ...