Time Limit: 5000 ms    Memory Limit: 10000 kB  
Total Submit : 432 (78 users)   Accepted Submit : 108 (57 users)   Page View : 3479  Font Style: Aa Aa Aa
Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?
Input
The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.
Output
For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 263 - 1.
Sample Input
5 1
6 3
10 4Sample Output
2
6
16

代码如下:12=2^2*3^1 因子个数就等于(2+1)*(1+2)=12

#include<iostream>
#include<cstdio>
using namespace std;
int num;
bool a[]; struct prime
{
int num;
int count;
}p[]; void init()
{
int i,j;
memset(a,true,sizeof(a));
num=;
for(i=;i<;i++)
{
if(a[i]) p[num++].num=i;
for(j=;j<num&&i*p[j].num<;j++)
{
a[p[j].num*i]=;
if(i%p[j].num==)
break;
}
}
} __int64 Deal(int n,int m)
{
int i,j;
int a,b;
__int64 sum=;
if(m*<n)
a=n,b=n-m;
else
a=n,b=m;
for(i=;i<num;i++)
p[i].count=;
for(i=b+;i<=a;i++)
{
int t=i;
for(j=;p[j].num<=i && j<num && t!=;j++)
{
while(t%p[j].num==)
{
t/=p[j].num;
p[j].count++;
}
}
}
for(i=;i<=a-b;i++)
{
int t=i;
for(j=;p[j].num<=i && j<num && t!=;j++)
{
while(t%p[j].num==)
{
t/=p[j].num;
p[j].count--;
}
}
}
for(i=;i<num;i++)
{
if(p[i].count)
sum*=(p[i].count+);
}
return sum;
} int main()
{
int n,m;
init();
while(cin>>n>>m)
printf("%I64d\n",Deal(n,m));
return ;
}

Nk 1430 Divisors(因子数与质因数)的更多相关文章

  1. HDU6069:Counting Divisors(因子数统计|区间筛)

    题意 计算\(\sum_{i=l}^kd(i^k)(d_i代表i的因子数)\) 分析 比赛搞了3个小时都没搞出来,有两个思维上的trick 1.要先遍历素数,再遍历[L,R],而不是枚举每个数,然后对 ...

  2. Nk 1430 Fibonacci(二分矩阵乘幂)

    AC代码: #include<iostream> using namespace std; ][]; ][]; ][]; ][]; void binary(int n) { int i,j ...

  3. 从“n!末尾有多少个0”谈起

    在学习循环控制结构的时候,我们经常会看到这样一道例题或习题.问n!末尾有多少个0?POJ 1401就是这样的一道题. [例1]Factorial (POJ 1401). Description The ...

  4. Day 2 T1

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  5. 2017ACM暑期多校联合训练 - Team 4 1003 HDU 6069 Counting Divisors (区间素数筛选+因子数)

    题目链接 Problem Description In mathematics, the function d(n) denotes the number of divisors of positiv ...

  6. HDU 6069 Counting Divisors(唯一分解定理+因子数)

    http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{ ...

  7. A - Divisors POJ - 2992 (组合数C的因子数)数学—大数

    题意:就是求组合数C的因子的个数! 先说一下自己THL的算法,先把组合数求出来,然后将这个大数分解,得到各个素数的个数,再利用公式!用最快的大数分解算法 分析一下时间复杂度!   n1/4但是分析一下 ...

  8. 【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors

    d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7) #include<cstdio> using namespace std; ...

  9. hdu-1492 The number of divisors(约数) about Humble Numbers---因子数公式

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1492 题目大意: 给出一个数,因子只有2 3 5 7,求这个数的因子个数 解题思路: 直接求出指数即 ...

随机推荐

  1. 洛谷 P2362 围栏木桩

    题目描述 某农场有一个由按编号排列的n根木桩构成的首尾不相连的围栏.现要在这个围栏中选取一些木桩,按照原有的编号次序排列之后,这些木桩高度成一个升序序列.所谓的升序序列就是序列中的任何一个数都不小于它 ...

  2. Python 学习日志9月19日

    9月19日 周二 今天是普通的一天,昨天也是普通的一天,刚才我差点忘记写日志,突然想起来有个事情没做,回来写. 今天早晨学习<Head First HTML and CSS>第十一章节“布 ...

  3. WPF知识点全攻略04- XAML页面布局

    名称 说明 Canvas 使用固定坐标绝对定位元素 StackPanel 在水平或竖直方向放置元素 DockPanel 根据外部容器边界,自动调整元素 WrapPanel 在可换行的行中放置元素 Gr ...

  4. 插入函数概念 接收一个callback,然后外面函数,接一个对象,和一个next,外面都执行完了,继续执行下一个函数,相当于一个链状体,插入了一个函数的概念 | log4js 输出 等于 console.info

    插入函数概念 接收一个callback,然后外面函数,接一个对象,和一个next,外面都执行完了,继续执行下一个函数,相当于一个链状体,插入了一个函数的概念 app.use(function (ctx ...

  5. python爬虫---实现项目(三) Selenium分析美团美食

    上一期博客,我本来想爬取美团美食的,但是由于请求头太复杂,没有破解开其中的几个参数,所以放弃,这次我们来用selenium来模式浏览器抓取数据,我们先来简单看一下流程: 1,利用selenium驱动浏 ...

  6. javaEE(1)_web开发入门

    一.WEB开发的相关知识 1.WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源(如html 页 ...

  7. ios之UIPageControl

    分页控件是一种用来取代导航栏的可见指示器,方便手势直接翻页,最典型的应用便是iPhone的主屏幕,当图标过多会自动增加页面,在屏幕底部你会看到原点,用来只是当前页面,并且会随着翻页自动更新. 一.创建 ...

  8. LeetCode 字符串的排列

    给定两个字符串 s1 和 s2,写一个函数来判断 s2 是否包含 s1 的排列. 换句话说,第一个字符串的排列之一是第二个字符串的子串. 示例1: 输入: s1 = "ab" s2 ...

  9. opencast的docker安装

    在之前的从源安装和从包安装opencast,都遇到较多环境问题导致失败.所有采用docker安装. Dockers是有能力打包应用程序及其虚拟容器,可以在任何Linux服务器上运行的依赖性工具,这有助 ...

  10. python爬虫基础05-beautifulsoup

    HTML解析库BeautifulSoup4 本文链接:https://www.jianshu.com/p/e9255c446a77 BeautifulSoup 是一个可以从HTML或XML文件中提取数 ...