刷题总结——蚯蚓(NOIP2016DAY2T2)
题目:
题目背景
NOIP2016 提高组 Day2 T2
题目描述
本题中,我们将用符号 aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABsAAAAWCAYAAAAxSueLAAAB6klEQVRIiWP8DwQMdAJM9LIIzbLfDA839jH0rLvP8ItSU38/ZtjS382w6i6aSf/h4PP/AzHC/wVC9/z/9J9C8OXI/2Qx3v9+Oz6iCA9UMA4zy1hI1fD/x2OGg0sXMux+yMDAy/KO4cEfa4ayqmAGJQ6qWvaf4dv1+Qyp4RMZ2IpXMExp1GRgvdHCoKcVxnBVGeiAeCmCwUS0Zb8fLWWItslkeFx+geFovCYDO0iMU57BxjOSQc9IgKj4IM6yv88Z1mZlMGxgiWM4kAmxCARYFWIZ5myLJda9xCWQPw9XMnRs/cogFpDIYMJLtNnkWfb50haGK0BaxU6FgYt8u4ix7B/Dj49fGP4yMDKwcbICSWSpPwx/SCjGibCMiUFAx4pBFpgar2w6y/ABavj/L1cZlrZMZDj89i/RlhGVQDgNKhnmFh9k8Ov1YbD+mMjgIvWH4SuzOkNkZT6DowgzdS1jYBZlcO05w/C+9BbDtUffGXhk1RhUJLhILn5IyNSMDBzi6gxG4iTagATQHPeX4cNqFwY+RkYGRjDmZnBe8YoIYz4ybPXmheoBYh4bhrmvfmM6F9EsAFp0/TjD2ac/GBAJjIVBWNeawVCclYBlfxneXjzCcOH1b4ReRjYGCUNrBh0hRJwiWUZ7QNcqBgAEc+95ZsYv5gAAAABJRU5ErkJggg==" alt="" /> 表示对 c 向下取整,例如:aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAMwAAAAXCAYAAABH26AeAAAKWklEQVR4nO2be1BU1x3Hv7sssOiCwPISZEFAXGERiWhtUFsjOFEajQ9sTWioWo3WqGn+cKrRBIXJNFSTImPaoZpMzNjRoiI+BrTaUMWYxAdQhzcoymAEsgK7KI/l7q93d5WH7OMuj2XN7GeGuZd7z7nnfPd3f+ec3+/eyyMW2LBhgxP80e6ADRsvEjaHsWHDDOySWXS7KtzLScfBUh9ET3GDnb7S1I66azk4mnUOl283wM43CL7OAvA4NcWgpewSso6dwqVb99HtEQSJq72BuirUnd2PzCIvzAh319+XYUZ1LwfpB0vhEz0FbgYapPY6XMs5iqxzl3G7wQ6+Qb5wFnBTr0MNRdnX+LZzAgJdDKtS1Z3F/swieM0Ih7slxI+w7dVtd3Dl1L+Qff47VCnGwj/AC06GdKnqcHZ/Joq8ZiDcMuJ1cNVHPSgpP1FMrgkXSUEDUSuLKH1xIHlIwilyig+xUtjYR0rv5DURo6d8Pxg55b//c/IOX0+Hr9+hmm8PUZI0kOL/Wkxtan0V2qhgrRc5L86jVlPXHiaU+Ykkdk2gi/rEk5qURem0ONCDJOGRNMXHThP3EaTvUF6TSfUsDCnKsmnPCik5Ygy9fl5vIz20FawlL+fFlGcp8SNme4bkl5PpFWkcfXi6kCpLr9AXGyLJM2I9Zd3v0l+lrYDWejnTYsuJN0sfR4dR0Dc7ltLW43eoXXuDM/ToynYK11x4ciqVdhrrTjf9kLWUXBBE2wvbe1u7+g75wZfWX2qmgT5jZQ6j+IZ2LN1Kx++06/rKPKIr28O1TjM5tZSMymdrtFVepFPncunvS93YOk4vmMMM3vbdD47R6y6gsD+XU497dFXSvii2bviHVPhETyWLO4x5+rjFMMoKlE3fi7TlEyHUzlF8uL28Bdtmsbvyu3jUbaRuZyn+tj0bitAkJIYJew6LopKQMOEBMrd9iTsqc+ZOy6OsKMP0vWlYPlGom6L5bnh5yzbo5D+CMflga4ydNB9LFsUids4ES3R3eBm07VWoPrwbpxR+iJsvgf2zw/ZBWLHuJaDkL9iV28QuUkcZM/VxcxjnaKxZFgSHvsfUHWjt4EO8MAFhToardlZl4Ug1e4moGEj6XsApGPNk7IGbX+BsnfFbbrRxjl6DZUH91LPyW9HBF2NhQhiMyO8Hz5xwx1oYtO0VuJ1Xxm7dIHET9DluB3FEJMR4gvx/3kLbSPWbK2bqG2SWTA15fgayg/fhwoEFcDN4I6jRXHgJNeyet9Snd5TRIsT4UA92W45/l436z2YeajnyM7IRvO8CDixw45j0+KnA0fbqLrS1a1atT/DoSf95RDDOD+PYbVtVOeRWN1Ya1yfQX8kwjKICuQd2YPOOk2iKTML31UpMi3Ix4HkqNJY/1O6JPMY+l32xg8hTxG4foL62FQxczc+GMQ9x+r11yCjtMFHQCbJ3D2JfvNcQ8+gMFBW5OLBjM3acbEJk0veoVk5DlMtoZOcZPDz9HtZllMKketm7OLgvHl5D7KZZtuc7Y2KoG/BdLf57Sw51hG9POZ5AqBs8VR1QDfKxOfPwNN5blwHTppfh3YP7EM9BPBd95jlMdwOuHj+DWy3ukE6yR23xl9g490eIynOQ6Kfvdlej60mXriHH51N0PPaYbs7pUHRo17JmOwzPCZJZcVgYYGqYsoevv3DIM0F3w1UcP3MLLe5STLKvRfGXGzH3RxHKcxKhV/6IwoOTZBbiFgaYiKFY9b7+T9fnQ8Bs24sQ/Ye3IPkqHQXJabiy5BP8wpWvTd/eLbiMOo0CDwlczR6ydfCcJJgVtxCmTe8Lfy7iuerrjf+NpxYH0HWfjr3prc0UyfZWkf4kYSeVpU7WlpmWcZdUz50rTQnVnov67B519ztnZVkyPXTdP0ZvemvSjzLaW2UgRdoPFdV8GvECZsn0wMn2pMnXUtH+JeSnyTh5zqDXVi6nRa8uocQEnd0n7S4ZmGEchbTyAIzoG/wkbe+PFWlpmMs6X31xPbr0FnKAtyxQO/0qG9vYRURfGCgbNLGLCMGTDDwss2Ls/VcgLW0u2+96FNfrV/+ThZPtWXgiRG4+hdrmKnx7NAVbtuzG5yf+gRXdD9iTYfjdypD+wba1YETfICdEHXx3GWb4AvfGjzN4wztH/goynEdV2Q9swzI49pxpx4OKJvZHnYn4sLGD6wDTiLydW5FZ0WmioBDSDelIXeA5jO8C8eEumwFf3MP4caPh7gwa83Zia2YFTKqXbkB66gJ4DmOoxcX2zxC4huBnr4Ro9zv+twfvZ7fBfdXHWB86eHdhGvOwc2smTJteig3pqVhgpnhD+obkMNRej0qlBEuWh0JooIxgQjzWRG/G5lv5uNsZh6nPPOZJJS7cVsHhlQ1Y4D1IS/IcIA6JQKTQ1IMce/iLh3ssI7TXV0IpWYLloYbUjyQ8OIhDEBEphEn1/uJhH8m52H5AndZvsOeNZJQErEfu/kXwGIID8xzECImIhGnT+2Mwpjeor3d1Zngdq35cQoeTd1FGbg09fvZYXt1GhR/NoembzlPv2yEqqv08nsQ8L1p2pO5pzKKm5v+8za5j/WhTgeLpU301PcpLJA+7MNp587GeRaQ1xTBqelxymJJ3ZVBuzWPqlV9IH82ZTpvO974+oar9nOLFPPJadoTqVM9fp5NKdmvW7kJ6Lde4KmuKYYZm+166HpynP80cQw7hG+nEfSOvB1g4huGuTwenGYYUJTjxSQpyFClImZ2E1bGBsFO2QD15Ly5smwn3npGCQWtNBeTUiPIaTap4AjS5Mdd5n+Lrwyr85ver8MH29YhWXUFGWjVWZeXhg5fGmO/+FoWgKDmBT1JyoEhJweyk1YgNtIOyRY3Jey9g20z3nmUe01qDCjmhsbwGrWzANuHpr9v98Cqyc3LxRUal9v/8j1NwoDkW8xbFIWycdb8wPiTbUxfklVdx5qvPkJFVB+nqE6j646uQOBpr0bJw16eDk8PwfRJwsr4WhTfK0NAhhGewDFNDPOA4IFvniKnJ11G9qhme0ol94hUnTPrtIVxfXo/bN0rRyHsLXxWlYbzTi/DIjw+fhJOory3EjbIGdAg9ESybihAPxwFpasepybhevQrNnlJM7HNTCHxikPC25i/Voj0fDoZie6bpBi7dVCDw1/tRsGc8nKxwbOCuTwfnGIYvCsD0XwaYLihwRXC4q/5rjPFD5Fw/rk1aEXyIAqbDtHwBXIPDoV/9i8tgbW/n9TJWvjGCHRsmOOvDgFdjGLRkxcKFxwNP+zcW8482jkAXB9J6Lh7OPe2KMPtQo8lgdrhhWrIQ6/KsDzyMnX8UjZb4gLv1HOKde9sVzT6ERou/kDpatm/FuXjnHu080Wwcsrx4zvA0gYxuV/OB1zXcrO9A7z0igDgiBlHe9gaqDx+MvBgFRU19XpXgwcEnCjEyy3xAxrSU4drNenT0cRCBOAIxUd4YcfWMHMUFRWjq854Iz8EHUTEyC31ANpq2ZyAvLkBRk6q3bZ4DfKJiILPkB2Qc6eMwNmzYMIUVhmE2bFgv/wcMnIfrpsE06QAAAABJRU5ErkJggg==" alt="" />
蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓。
蛐蛐国里现在共有 n 只蚯蚓(n为正整数)。每只蚯蚓拥有长度,我们设第 i 只蚯蚓的长度为 ai (i=1,2,... ,n),并保证所有的长度都是非负整数(即:可能存在长度为0的蚯蚓)。
每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个)将其切成两半。神刀手切开蚯蚓的位置由常数 p(是满足 0<p<1 的有理数)决定,设这只蚯蚓长度为 x ,神刀手会将其切成两只长度分别为 aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAIoAAAAXCAYAAADUf9f5AAAJd0lEQVRoge1aCVBUVxY9DdhsTSMQQMsFhQia2CwZFY3gijEIIYWjFKnoNI5SpY5iJc4wAQUncSvHaCnEUcctVpiCCWFRwIB0cCEgZWQRBQwBkRAYtoEGBbrp5c5HCA0NtDTdI2o4Vb8oHm8595/z37v3f1jEAK8CZK0oSf4CB78SI/DsHriP1xltRq8U9EabwMhBEP+3DPnZmchIu4y4eAHKdKbhzTd5SMuqwwKvCUxwrIGjmOeCxRrYPgbV6GMUCSovRSJW5oug1dPBft5MJFVI/iIG7T474GenavUOVKTHIb2kFs0SQ1ha66IiKQ3GEdVoWWPe26s95xOsPW8FP09bGPb4Qv44H6f338KK6HjsdOEMYqMXBJJKXIqMhcw3CKunP28lJKhiduaYdh/s8LNT+IB68Ziur7Og8WsF1EqjgCff00YrE/JJbVFvnOQhHXPk0JJEYb/mtpytNMl0Jf0z+y7dvdt95SZ9THb6PDpQ8ITkWqSudTy+TussxtNawWgo8YS+32hFJj6p1FeJl/joGQpySOU6YOmOgx7bDK/zHOHI6f6LxHgSjAwnw2m68Yu7m7ygePmMIm3E3cxc/Efck4PLalEsFKMhV4BU/XF49O9QHBGHIjlID2PprPbw8hlFzwTm+joQGnBhwDjhSfZBfPmzBG9wxsPMjAOzzecQxTIAqzMfg+eshFejzHu+UOuhkzXeRszxMGznr4bX+lMoqS9AVIg/ls+fi0V+YbhUKVZ0Zp783PhIhAZ4YuGyrYivkXXNgMbMo+B7eGBLXPUIKetjytsrsHiBK1znzYAoKx+dTCvX1gWurq7d1zwnTOXoDn68DPNtgLQxF/GRoQjwXIhlW+PRTb8RmUf58PDYgrhq6Qj5awPMfbwdg+Nh28Ff7YX1p0pQXxCFEP/lmD93EfzCLqG/FJrHopZRdF+bBz//WSiMSkBmQy2+OXEd3DWfIWKXO2pj98F37Rk8/HVNHSPYLA1EcMBklF07if2JVRDmn0B4ggi2DlNgYaT5ZiatjMH+ND1MMQDKLvwRHt6bcSS5FE9UeoGG5RUdIxssDQxGwOQyXDu5H4lVQuSfCEeCyBYOUyxgpDeaWY4uXpvnB/9ZhYhKyERD7Tc4cZ2LNZ9FYJd7LWL3+WLtmYdQSKGFWBR57fCqHlHhbrJjhhl7RFBxe28jhdkxCrBXUYpy0dKSTn5ckP6iXRQSHE2VkqGSbTWrHrmQMjbZ0Otbv6K9PKbqSaijiug/0FSGm8MnudSUF0y2Vv6U8VgxpLPsCPG4K+iycOhpldGS7kdc6NOiXSEUHF1JQ9HXKoZV9YiocLcdY3lj8ogoJoUUYU/1Ya9KoYFSDCcWrVQ9MtRnp6IcFuCH8DHLsKdZLkKriPlpYg2urtIQzmx481j4OjMdE8/vwVQtZUWie8fx19vv46xgPvI9mAaWPqb5n8WNjka4XbgP4e/lg+ciJFMrR+HM9gaP9TUy0yfi/J6pqpM6WR2S/7IZ/3ggVtWLgQHe2H4Kf/e0GnnCLatHdmo5YMFHCH8WFFK0olsKLgZKoUYsSlBPNhLiTkIhYBWAQFeugnNDHrKYlEPf0wszjZTG6JjBeZktkM2GOUeZ+gghuo+InTfx/peXsNisDvldyj89T8ZhGj8W+d4sGP98d9AjhuRDGGgI6Jg5o5u+OZ5Jn0miJ73ljsXWkmd0ZGPyRAONSnQS3kG3FIFQSCFDQ14Wqpk8ztNrJgZKoUYsSlDPKG33kfhDJ8y9PoCj8a+NUlQmnsEdWCMw2AMWStHLm7JwUdABFt1DSlEbPrQ2UY+hMqgVOYf3onbHv3DYhSEhJcgZR5C8R34mN7K0BDoqmZ1D1oa6X6pQ1cNVUtOMTup6zzLcxeRoyroIQQcLdC8FRW0fQiV9HVO4rPsYLhqEN1y03U/ED53m8PrAEQopKpF45g5gzeSGHhZKRlQzFiWotfOJyq7gRpMBFqxxwq9rkPAmDh7IhdW609jrbtqfnLwR6Z8ngBdxFCvZLchOK2e2RYKkVQjRiGpUCX5JOYWbbx3BIW/r7q2Vuo0il/efkGQSSDpqkHtNAIGg+8rIeoAWqQwS2fAWlzem4/MEHiKOrgS7JRtp5cymThK0CkWjXGKLUHblBpoMFmCNU68SEN48iAO5Vlh3ei/cTZVsomEsauwoElRnXEElHLDTsYectAYJQRuQ5HwMV0/6wPqpclI0FmShwpwHbuZh5CwJx24XEcSOQGoyk99sa8C3cYbYGOQGA3X3XsYQxq5/wp8tjfs4XI4uj5Cs+0jpnVLaCbnRDKxavwFLe97MSiukuHLjEaaq+nzClPUFWRUw53GReTgHS8J3w0UkhiNSkczkBNsavkWc4UYEuWl2dGgESTUyrlQCDjuhkCIBQRuS4HzsKk769DxE2oylT6qtuuqR1dDFhSxGCzvaEp1Ft9IuUHiAL/EPfUc1nX36iYvoU/suzczo3ciinmy8k8qOz3maSZgu3ke3Wwb50jLSbz3iEto/05AWRNX1+34j+imGImMKSChTc7qiT8m+6/E0e5cii3pqic4yOj6nKyZTWrzvNg1GX6t4RtUjq7lIC5kTBHZbKDrrFqVdCKcAXz4d+q6G+ksxklgGr3qGb5TmZPIxAlltyqBHP+ZRXnEVCYeoFcX1JVRQ2tS//JIKqbywlBrFg48ZuVHu099m6NPcc9WkpieGmpDqSwqotKl/cFJhORWWNtJQ9LWKZxilOdmHjGBFmzIe0Y95eVRcJRyi1B1JLBqWx+3Fl5HTro857znDxt4MNir6si1nwslSqVHXFLY80+EuN3ywuPhd0Gms8Nag1OwHNixnOmEgfVv8P+irj3YUX85Bu/4cvOdsA3szlUpoLRaleyuDMNYDXBbr6T/3sFjGWB5Tz7R3oiL9GuqZ/OQdnoZVSy9akOJl0rMOc3HccK7+WWXlIBg3Bd7b+Hjb6uX7bKUSMiFiPbiK+2O8HDH1zInRWYH0a4wmDu9AW1K0pHjBpFdzDtzO1UNZiT531xBOoUkQ8PtmwXqwmM1G+dVIhEb+xPw+DQ8ys1Fq4QZ7rqbPLwfzDyRD8JFEsR6LjQkuxqoG/TZg6ITQJAH4fUtDPQvMZj/E1chQdEvxAJnZpbBws4emUnDmH0Cy4CNIFEKAPcEFfZVgdZ0/qqeRob25GW3Snm4sXRiamoMzTjNyYxgBZO1obm6DQgpDmJpz8DykGIZRxjAGNV+4jeG3i/8BJ12+te3DPLoAAAAASUVORK5CYII=" alt="" /> 的蚯蚓。特殊地,如果这两个数的其中一个等于 0 ,则这个长度为 0 的蚯蚓也会被保留。此外,除了刚刚产生的两只新蚯蚓,其余蚯蚓的长度都会增加 q(是一个非负整常数)。
蛐蛐国王知道这样不是长久之计,因为蚯蚓不仅会越来越多,还会越来越长。蛐蛐国王决定求助于一位有着洪荒之力的神秘人物,但是救兵还需要 m 秒才能到来……(m为非负整数)
蛐蛐国王希望知道这 m 秒内的战况。具体来说,他希望知道:
- m 秒内,每一秒被切断的蚯蚓被切断前的长度(有 m 个数);
- m 秒后,所有蚯蚓的长度(有 n+m 个数)。
蛐蛐国王当然知道怎么做啦!但是他想考考你……
输入格式
第一行包含六个整数 n,m,q,u,v,t,其中:n,m,q 的意义见【问题描述】;u,v,t 均为正整数;你需要自己计算 p=u/v(保证 0<u<v);t 是输出参数,其含义将会在【输出格式】中解释。
第二行包含 n 个非负整数,为 a1,a2,... ,an,即初始时 n 只蚯蚓的长度。
同一行中相邻的两个数之间,恰好用一个空格隔开。
保证 1≤n≤105,0≤m≤7×106,0<u<v≤109,0≤q≤200,1≤t≤71,0≤ai≤108。
输出格式
第一行输出 aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACQAAAAoCAYAAACWwljjAAADQ0lEQVRYhe2YS0wTURSGv0qB4gMIxYAtFCWiRlRaNT4XkLqAROsLFBM0RF0YTFyw8rFQdxqMcaFro8b3A0pEA/GBGqMgYsSoKFoENKAUrIKMLS0dCyZYQLHtQCHGP7mbmXvP+Wbumbn/vTLRJUaRxow0QH+5ATkwl+dzrvAJn7v8k7zzw23OnyvhTYfbJIm9+ibey44QUe0QHwmiX2TJT3aRaMVjdfbea6N5ykaH/gP9TdKA+nwcfW84ffy7eQ/U1UrF6T0YZsWi212J5V0+e1YmoJiwjOMNNsx3DrFpXijyqbmUC/4AClAyP02HYPrOzLmNXLwRQU5eDtMcZpoqT3KqeQUH9yUT0lyHxe4PIJc6nl+lShaH8qMCw5ZkFFXXqA2N4WvbYrati+N98ROcunS0E/wCZKWm6A6t8liWZOhRydt5euUxQlgS6zNmM97ewO3SVqZnLCXSh+hyr0d01lF87T3RG89jUAWAUI3xvpUFe3PQjQNn40OK6uNYpVf5ENyHN9TVVEq+SU3mZh3jevhKuGlJYutyNS482qsKqQ7Xo5ff43LlF5zDCyTS+vASLyMNZCaGdOPRdLeQhvh0UqK7cRxYTPWuWnrGhVshJGvDvX/iIV9cOy3ixxZB7PJxcfVlmgdXYDhRSt+Hew0kCAJms9nj/mq1Grnc8zReAxmNRrKysjzuX1NTQ0JCwvABpaamUlZW5nF/jUbjVXyvgZRKZU8bLv1j9mMY9A8DOS2Uny2i3gfL4a6hAbI3Urw7jQ0FAYQHjjCQKLzizM6NbMp7hN16nSMnX7kMyggCycbOYP325UQrtOw6eoT92TNQjCSQq3hoeVBAbYyBlEnSl8YhAPpK5ZXnhOnTiA+WHk06UMcLjOUyFq1OZKx0HulAtrfXKW2fw5opJkoqWpB6cCIRSKT99QPqhQauFnwiURvZY2OlSGIVyohcW0itycrEKVGEyCTS/BZIdGCzWrG6BR8TGExQwB+yycPQxId5kErEYbPhcNtiWzt/swUY4Kl/7tj7tIUnmjzyyINKeCzmxgyMPYinDmZq9mGOzm3rt3UJInZRqPTqD9KQceAYk/ufFwaqSIn4VXmybiqpuYZSo85+/ADmPXLN70/80wAAAABJRU5ErkJggg==" alt="" /> 个整数,按时间顺序,依次输出第 t 秒,第 2t 秒,第 3t 秒,……被切断蚯蚓(在被切断前)的长度。
第二行输出 aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADcAAAAoCAYAAABaW2IIAAAErklEQVRoge2YfUzUdRzHXyd3PPiAhCR6HpFE6SAR0NSyBZw90PTM0gk2kTX6B10zt1rqmrW1VqMH/9D1RxtNm6UZB5IPE0klbRoobhAdmB0PGicqcAhy3h13v1934IRDyrsf8FOM13b/fO/7+Xw/7+/D3efzUYgueEAZc68DGE76iHNwrTSf3YXnaHXeu4AkYf+bY3t2U3Sh03NcvM0N8URmqIj6LbHMIo4szPlikktK/PZ6j+H/y7V88BgVN1KRQZyD9sZLtNjl/zsdpLjegEVBYMDwhavkrVrM59U2r/zQL6cQBembIkGck9byXWxaGkdEzDpONteSt3EZMUF+RK//jc67O7jtp+XMLjbrniQiYRPl5jryNy/l8cAJLPrmIrZrJXyWMYdgZTQbSi2+h4kkcX6EztGRpGygM/ZZWvcWEbYhly9fGseVhja8///3Y9LcVBIsRm7GJGLaW0xodg7ZT7iSicvl7Pz2Kks+/YCkoKvUm7t8D9OFUpKVxUBhqUD0snqcL79Dckg1m6ucxL0/i3Huryu/YsvXBqzuucINfjfUYf74bTom9yyn0ixl47svEn6ziv0VCiJjmwjUrSVJpeej2mA019t5ev0aIqvWcU5IICd+gnzibMZDHDEJPBaXzpLp/jhqSzhoimbNc5Nd5+Fy+tAM5s6fQPd+C61YjhTRFDeP+ZGqbnu/UDWBCrD+eYCSFiWJz6xAq1bSUaznrGUia1euYNb4LmqOHadlRjYLw6T9NEgQ56Dx6E/UhaWRuyoKfwSulBZgdJ3GCxE9wftHLCI949Z0wURXbi4XdK+TMTuwjx87NYcPcmnKavbo1K5NsVC971es87aQnTCu2+70gQYiX9Gilna/JLw54Ron884TvvxNngp2D9ygIr+S8UnPE3RKT1mr4J0f52WO5xuZlvYGbi3Y6yn62czsrMVMcx9/RwWF1SFotUpO5JXT5qXbvvgsTmwrY29FMKmr4rrfF0InpsZ22sp3UOBcSGKody7FltP8aAhDlxZLEG6tv1B4MYrlyVO6r7bDbKTB9fYqfzhKUFI8IVJuZm8OLb0q6LpuEhvN9iFI7/tiF81NzaLF6cXUf6kKJN5mT5TBU1EPhSMPVISETxqUB5/FNTU1UVxcPKhFpZCSkoJGo/HJxmdxBoOBrKwsX80GjV6vH35xWq0Wu93uq9k9YbTkGamMihupyCtOMFP6/QEapFUwPiOfuC4Thzelkl7gR4hKniVlESdaavjuvdVk5JTRZT3E1p01PbXeMCOLOMXYmaxcu5gpgfFs3LaVDzNnEnh3s0Ej07UUaD5VQK1GR/LUIUlnvUImcdcp11cxUZtKVIA8K7qRR1znH+wrVbBgWSxjZVmwB1nE2f46xPGOOF6dbqToTLMPHbLBIYM4kY7zp2iwXGR/wRVi48O6K205uPN1iw5sVitWRe/QGFUA/n6KO6Z6h4Kw1wqpNVp5eHo4QVLdeIRow+bo04m22hmwxdJblN9qM/T0tj0+83dcFr2p9uXBIp7doBkwzv9oMwQQnfkF2xLb++2CPxELgu+jJNSfR1Z8wvZHW/u9XRXq5FCPEYVboZyhycn9cyDDwD9h/NblYEI/FQAAAABJRU5ErkJggg==" alt="" /> 个整数,输出 m 秒后蚯蚓的长度;需要按从大到小的顺序,依次输出排名第 t,第 2t,第 3t,……的长度。
同一行中相邻的两个数之间,恰好用一个空格隔开。即使某一行没有任何数需要输出,你也应输出一个空行。
请阅读样例来更好地理解这个格式。
样例数据 1
样例数据 2
样例数据 3
备注
【样例1说明】
在神刀手到来前:3 只蚯蚓的长度为 3,3,2。
【样例2说明】
这个数据中只有 t=2 与上个数据不同。只需在每行都改为每两个数输出一个数即可。
虽然第一行最后有一个 6 没有被输出,但是第二行仍然要重新从第二个数再开始输出。
【样例3说明】
这个数据中只有 t=9 与上个数据不同。
注意第一行没有数要输出,但也要输出一个空行。
- 1 秒后:一只长度为 3 的蚯蚓被切成了两只长度分别为 1 和 2 的蚯蚓,其余蚯蚓的长度增加了 1 。最终 4 只蚯蚓的长度分别为 (1,2),4,3 。括号表示这个位置刚刚有一只蚯蚓被切断。
- 2 秒后:一只长度为 4 的蚯蚓被切成了 1 和 3 。5 只蚯蚓的长度分别为:2,3,(1,3),4 。
- 3 秒后:一只长度为 4 的蚯蚓被切断。6 只蚯蚓的长度分别为:3,4,2,4,(1,3)。
- 4 秒后:一只长度为 4 的蚯蚓被切断。7 只蚯蚓的长度分别为:4,(1,3),3,5,2,4。
- 5 秒后:一只长度为 5 的蚯蚓被切断。8 只蚯蚓的长度分别为:5,2,4,4,(1,4),3,5。
- 6秒后:一只长度为5的蚯蚓被切断。9只蚯蚓的长度分别为:(1,4),3,5,5,2,5,4,6。
- 7 秒后:一只长度为 6 的蚯蚓被切断。10只蚯蚓的长度分别为:2,5,4,6,6,3,6,5,(2,4)。
所以,7 秒内被切断的蚯蚓的长度依次为 3,4,4,4,5,5,6。7 秒后,所有蚯蚓长度从大到小排序为 6,6,6,5,5,4,4,3,2,2。
【数据规模与约定】
测试点 1~3 满足 m=0。
测试点 4~7 满足 n,m≤1,000。
测试点 8~14 满足 q=0,其中测试点 8~9 还满足 m≤105。
测试点 15~18 满足 m≤3×105。
测试点 19~20 没有特殊的约定,参见原始的数据范围。
测试点 1~12,15~16 还满足 v≤2 ,这意味着 u,v 的唯一可能的取值是 u=1,v=2,即 p=0.5。这可能会对解决问题有特殊的帮助。
每个测试点的详细数据范围见下表。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAlsAAAIZCAYAAACRVfoWAAAgAElEQVR4nOzdCVxU5frA8d8MOwgKyCoo7or7UppXTcH1Fi65lOZWUn9zyZuUuGt2tazrUplel1tq3DLTxC3I3K4aLmVuiQsuiYIoCLKOLDPznwE3UlyAcYbh+X6aDzlnlmceDuc8877nnEeh1UEIIYQQQhiE0tgBCCGEEEKYM4XuJiNbQgghhBAGoJ9AlJEtIYQQQggDkmJLCCGEEMKALOX4+JIZNWoU/v7++T9F6fvmm2/YvHlz/k9R+mJjY2nbtm3+T2EYvr6+REVF5f8UpW/AgAH06NEj/6cofQsXLuTUqVP5P0XxyciWEEIIIYQBSbElhBBCCGFAUmwJIYQQQhhQMYstLRl/rOW7g9dR6/4/K/Y4FzPvHvulSTvHycTcuw/P/I15H3zNkVTNPS+heeg1JzTXtjD+H1/wvz/28cuZNDQPeeydl0z8gZfbv8Gay3lP/ImEEEIIIQyhmMWWggp1mnB1fFsGfXeZ6ztGETh4FouXLmXp0iXMHdOFbqG7SLldTamvsmv1HtIt7r5dXtxaxoX8l7M3i3gLzXX2/bCb9MqenJv0LO0n7yHlERWXwkLD9atKfF0sC92fk3od1eNUa0IIIYQQpczy0Q8pgnUthn3Qm8NHMsDFBvfWLxP8Zm2s0JBgs47tlk2wv7SJxb940a+rEms7J+wt7nljn270vNGAgFGeHFseSCVF4ZdXWjtga+eMq1N1us0bT/jbp0nXtMP5YeWhUvdx0v5g/ZdLOW596768BLZ+toKct7fw3cj62BX7AwshhBBCPLliFFsaMmLPkuVZB/d2s/mqnZak1foKKI+4de8w//oQRlkVPFKbfogl8xwI6NQIpeKvr+NEyyFdcfkinZysq5yNvU7OvfOKGUmos+M5Ex1NRdu6dHcMZcp3nfnPq9WwKio0hRLLio3o/fqbPGd/9+43R0578o8phBBCCFEKijGNqMRW+wtjek1ie5IaddIh9lzOyV+ivvYrv1y1wub2qyqtsHWvg6fNfZVWvgrPL+XQ6l64W+USf+os8UkppKTcumVY4kYcF68lk5IK/iPmMKI+5PxlOlCrKXzkV+F30pKbmUGuXEpMCPOhSeFA2Eb+zDF2IEII8XiKNY1oWa0vI70a897q4ayv8yuKijaQoj9mygJrB+u7FdyDa6w7tJnniIpxoU1TH9r39im8MNedXzxXUrHRc/zN1+LBL0AaP73aiaV1h9HNW/dRci5iUyWDbSuWclz/ydRXifzw31gt+J1vXvKgqFcpT/R1Z/6vRatBo/tN3T/iKIrlTmL1fbB0/6u4u0CjVUieS0tuPJFTejPi3DSODDJ2MOZHo9ZtFfTH1upPYFIoH7UJF0+qUF5l22AwJrh/K+YB8o60nbud7wc7cOx3N/wqFNyrUWuxtLN6xB+omsT/fcGsTxby+YwhBL30AftuZHIl5iTR0dH5t6M/fciQf2zDqkI655NyH/JaCiyy40htMpA333yTN0fPInx7GFNHvlnw79d709C1Fl1bu5XrQkudfIiwiT1o7OvPqD1JnF87gV7+dljUGsv+TGNHV4apr/Nr2CSCGvrSbOIhblxYz+SetbF1DOTL2GyS9sxjaEsnLGu9w4EsYwdb9mmzTvHf0EEM/vggedmRzP8qGpWxgzILOVz6cTajxs7kiy8XM+sffajlO5Cf04wdl/lQXz/MDzO74lW5BxuTC+5LjeyLq3t/NibJ2VulRZsRzX8nvsk/Zi9m+eL5zA4OpPvMwyaxnSj2dbYsKtWgau4hdtvWwS2/ktHqNoDgULlCfmHz1+m9e56J2/OjmPzeaIJ7N8KrficaVbIkN+4U5+Iv8MOQF5h9uRX/N6gpfrU0RP/5sL2U7luB5SM+gu5bhEU5v5qYhUsLgp635GJmA9omr+Gnyu/w5fxuOFy9yA21saMrwyxcadmtGVnnVPg3v8Kabc6MmPMWdfISufL716y60p1Z057H7toFUh72nUE8FoV9PfqPfAFP26ZM+Hw+77/mLye8lFgO5/7zCl0WVGDMnGmMeeM1ArP3caXeSzRzNHZs5sPCtRm93wrGP/s4e/4sOAW/YrtJjKqRhUprQsMvZZjmxi9M7fwSPzabxr8mj+LNV2vxv69/Qav7Mmxr7OAo0UVNNVzdsR5VMz+s1frKXE36dUt83W10JZAWda76odfRKsyGqh16E9SpDfVdHPFt1oa/Pdea57tVI3ZHzEOqUi2PbO2o1aAu918csojecABNLXf+VHdneIdKxEVFo2ncg0YOxo6tbMv8YxNHFX5UvmrDi689j+3RLZx3qkJqyjO80a8alyMPoW7ahyay4yoFGpKi1nPeJ4gOXsU/kVrcdfOPT+j7znmGfTaCevo9kiaV08czqP9SK1ykBihVCsc6POueyK9nM/L3jdrcG+S1H0mgqyS6xNRX2TDiJZZXn8unfX3yj4+6eX4vZyxa8kprF5OYDi/GFiuPxF+3cSDuLKtnXaHHNgfUf+oKK20mF6KVNHzNFsVVT6pZWujnFXX/5erKsEfXldpcFXmFolFQsUUQzjPCOX2zFU2LeAm17nmxP61gaaL9/Qvz4vg1KRuvvHJ+hHz2OX7cGo+mZmNeebE61nl/8r9Nl6k5qD3u5Xl+tcRucmbzLq5bNue5PgF4W6bz87rfyHL8P/r2b4Jj7il27Eym7v/9DbdyPrpaOlI5tO4PKgZ8TA0bY8diBrRJREyew+lWSxhWp+BaOeq4H1l+xIO/L/a8dehFNidmdWNK9W9YP9DLmNGWfdbu1HHT8MPpRHKpwPnwAzwz5j0qy7ahxFRH5/LO986MOt75Vj4zOLT8ay7VmcDz7qaR4GIUW5a4NWuJ68/T2ZTXi6kVlTg8G8rHmmRWbG5I/5s3qNT/a/6je2T2CTv8aldEoX340JI24ygrlsbSZUzbu3eq07mmaMerrvP4Yt9Elna04OTWy1TvUveeqQNLPDuP45/dR/JyDev7X1idRLNqgXiYSLKNJS9uOxsvVObl/wxAnybNtf38EFOFHp19i76Mhni0nD+J3HIJz0GrCfLW7ZqyThK+V8UzU0bR3EGX5/h9bP7ThxcDqpTggnbijswThB9Q0PqrBjzgq5V4Umm/sXJbJk0WdSj4MqBN48CC2ey1bc+sO9WsDfXGfstSCw9jRmoelA54eViTHpdC6onD7PYLZnhV2QKX3E1Of7eGiz79efFWHZBz7r+8v+IKNUI7UcVENr7Fq0IsK9Pk+ca4ufvhYqXAsX4gNY+t5PKLb9A0ZRlvTVjPxRzdn2mD91jzeWecixzDU+izwtchn2PRpxtuN85w+losEXMm88GiCGIt/Ogb+izbQxZwLOVPok6kFmrbk/n7Kn59fhwvV1dxcOly9iXrl2q4sW8xX+y8htqiMi2fr0D45HnsTS6vc4kaEves5bRHH4Kfccq/J+PoDxyt8Dyd7KJYdzD5sVohifupr+zkh3NVePm1ZuhnY3P+/IltKU0Z/mLBMHb60Q1EVwqgs+1e1v2WInkuoeyzP7IzvTG9q5/jp1+TkMMNS0aTdZWELCWOTvpDP/K4+r9v2XFdi2PjLrj9EcnvyXncOLaWD6eH8afaFCZiyjpLnLwcSPv9W/590J8Bz7uX6xO3So9uPY1L1VUzFvnThZrkA4StiSZZUZUXX6jOA4ZhjKKYQz65XN4bRfzNvPwdSHbMCqb82I75bzfAo80YhqSE0GXiQTJzMsjQX6lUm0eu/oGF/l61ZKdcI27bNMIbB+MwrT5ef3uf5Lcj2P71XKaO6U8rL1ucA/7JDO8v6Dl4Dhvi1HdeQpt5mE8n7KCyl+4bmKIidWvsZmifJVzIVVKpSQvOvv0S80/noKjQjMFd/2B40CecKKo1kDnT3uDgmqM4dRtA4/zjszRkxl0m9cYhVoZr+FtzF+lGXixaru/7nujKQbzcQD/WqubK/zYQW6MPHb30m9A8Us5dJC09mnXbbGjfzFnyXCJa0k9HcTErlk3rr9KgaWXZUZWQ0vU5Xm6j5OfhXek5cDRfZgfQRpFORsx3fH+9IY1cLKngdJXIKAXOMm1bCpTYOzvjWe95Xh/cFEepX0uJPY1e7YX3nx/RvV1n+r1/kvq1L3HOIZBe9UznFJpiDrApcW75Mq+mupHx+1d8scGGd//9Ov75n8uJNiHv0HxRBjk3L7Nn4XQmfrSGM/7/5tNCI6YKHJsOYnC/dowKbk3N3hs44uyPr91f1kBLXwZ9vY4LPf7Ov6L7kq27yz4vlhV9OzLHegmnbw2bVWzeh0Y5v5GmL+rsG9CnvSXrUvQNqa1xbv8PXsoYyc4rITSobiJjik+LwoWeW9LpeecOJV6DIrnURUNl70oyjVhsCtxf2UHWK7f/bUG1tw6heuv2vy3x+79dXBlgjZurnRRaJaag8ksbOH/uJm7VPfjrZkIUg3Ud3vnfNfqcu4aVb0287JWo2xzhz+zK+FbWj3ZpuLpvMzcDPsJXNhSlwIY6YyP5za0qlcrZbsiwlLh2/w9nEyZzKceNGj5Kdg9+F9p+fWuAwTQU81dugVvgNJa1v8LBw/5Mer8qtvds/KzrjOHbBQX/32NSGM1b9edC/SCq/uWrqGWVPnyx5tY/vBvgW8S7KZ3bMn1HDF23x5M/lGZZhZcW7qOLdz08b+/FXIJYvSsIq/yNggNtF+7kb7evLGnbiKnbtmBZWdbwfJZOeHkbO4hywKoiHq7GDsKMWFakao2Kxo7CvOhzWvduTi0cq1D1zpmz6fwenkDLkVVQ69twWEmFWzIK7L2qyvGGBqHEzqMWdfT/m/kLq7epaPl5S0xpa1Gy6sPKi2effeSD8Ansg8+jHvbIl/GgdbfbB2laULFm/b8kUnmr0LpFV2gp7llm71appBEIIUT5kXuNP87nofzzNKlt/iZFgigDcon/eRE/XK3KOw0rmsQlH26ToR4hhBD3s6rFP3b8gsbB6W6/WyFMlprkI9v45eaLfP7Niyiid3HcM5BGzqZxdKcUW0IIIR5AgZWjk7GDEOIxWeDStDv9mho7jgeT7ytCCCGEEAYkxZYQQgghhAHpjx8r571shBBCCCEMQ6vVysiWEEIIIYQhWeorLlF88+bNw8/Pj5deesnYoZiln3/+maioKKZPn27sUMzS1atXGTlyJOvWrTN2KGZLv23497//jbu7u7FDMUszZsygbdu2dOrUydihmCX9tiE2NpZ33nnH2KGUaTKyVULnzp3jypUrxg7DbCUmJnL69Gljh2G2srOz+fXXX40dhlnT51efZ2EY+u2DfjshDEO/f9Pv50TJSLElhBBCCGFAUmwJIYQQQhiQFFtCCCGEEAYkxZYQQgghhAFJsSWEEEIIYUBSbAkhhBBCGJBpFVu5iRz8ajJTN11BbexYyiPJvxBCCFHqTKTY0pB2ajths4bQ9fXZbDinkh5CT5XkXwghhDAUEym2lDjVC2RQyDgC7I0dS3kk+RdCCCEMxUSKrdsUKBTGjqE8k/wLIYQQpc3S2AGI0qImPTaGSxmaIpYrsPWoSXVXa6SeEkIIIZ4eKbbMRiaH548mdH9mEcutqTNyFcsHV8PqqcYlhBBClG9SbJkNJ9rP38Y+Y4chhBBCiEJM7JgtIYQQQgjzIsWW2UhhUy9P7O3ti7i50GbuaXKMHaYQQghRzpjYNKIGtf74bq1c5enJORMUnkBWiV5D8i+EEEKUNhMZ2dKiit3P+kUL2a2C8xvDWLfzBClyGfOnRPIvhBBCGIqJjGwpsKvamt6hG3U3Y8dSHkn+hRBCCEMxkZEtIYQQQgjzJMWWEEIIIYQBSbElhBBCCGFAUmwJIYQQQhiQFFtCCCGEEAZkmZiYSJUqVYwdR5mlVqvx8PDgnXfeMXYoZkmf3+eff97YYZgthUJBnTp1jB2GWatbt25+noVhuLm5YW1tbewwzJadnR3Ozs7GDqPMs9SvqBkZGcaOo8x6++238ff3Z8SIEcYOxSytXr2aiIgIY4dhtrRaLWfOnDF2GGbt9OnT+XkWhqEfMMjJkd4YhqJSqUhJSTF2GGVe/nW25FtB8VlYWOTfJIeGYWlpKaMCQgghyjQ5ZksIIYQQwoCk2BJCCCGEMCAptoQQQgghDEiKLfF4clO4EH2GBJUc6CuEEEI8CRNpRC1Mmfradj6dt5XEzBOsjXBm7r6V9HCTOl0IIYR4HCZSbGlRnd/M/FmL+fFEOpWa9GLs1DF09pEz/IxPQ1aGF4M/mIObVQrP9ezCvrgcXbFla+zAyhANqUfCmPv1GexctSTlNSE4pB/1HeQsSyGEKA9MotjKvfAVw4ZuxrtrB7o47GblwnfpsvEEkX8sp6urjKCUptzEg4Qt2ETl0TMI8rK4u0CTypGwuXx9xg5XbRJ5TYIJ6VcfB4USxxr+OOoeknNxB/v8JzOmoRRaT0J1/CO6vLCLN37ZQrCflpjPA+nYK4ldW0ZSS75PCCGE2TOBSiaDX786Tt/V3zN/ynimfbaRg5tfxTVhFR/vSEaOEColmjRObQ9j1pCuvD57A+cKHXul4vhHXXghrCpjpk9k0vQROH/emV6Lz3L7UoF516JY9elyVn8Wwqy9qfJ7eVyaBMJDZnOm3Xv097PS3WFNrYHjaLxvIuMjr0sehRCiHDB+saVR49zjXXpWuT3KosS1zcs0t1SjUuXJzqi0KJ2oFziIkHEB2P9lkSYhnJDZZ2j3Xn8K6oFaDBzXmH0TxxN5veA3YOnehuB5m4laWpfda6J15Zl4HNqkXSzbkUntzv5UuHWfwqkRAX5pRCyN4oZRoxNCCPE0GH8aUVmR+i0rFrpLnXqJJKuGvNLa1QSqQTOjUFD4SCEtSbuWsSOzNkv875QDODUKwC9tKkujbtAj6HZfLAuc/OpRP9Wdcjf7pU4nNuYSGZoilits8ahZHVfrwtlVXdjDSbUdrXyc7q7LVq7UcFNwM3o/l7KDcLYxZOBCCCGMzfjF1n1yOf/DKjIGziW4lpWxgzEp6vRYYi5lUPT+3oOa1V2xfqLjrlVc2HMStV0rfJzulrZWrjVwU9wkev95Tl37F2OjmjO8rz/qy22YMbSGKa44hpV5mPmjQ9mfWcRy6zqMXLWcwdUKr7Pq1CukYYOj7b1fGyywr6ArV9N0y/J0/5RiSwghzJrJ7TPz4n5g1o7urPpvZ1xkWKuQzMPzGR26n6L39yNZtXww1Z6oRlWTeiVNt8N3pHA9YE9BPaDCd+ZyVgYmQmUfPCuY3CrzdDi1Z/62fU/8NKWto66W0qDWFJ4QV+fpSmZrB6xlHRdCCLNnUntObeYxls05yYDlU2ntJKfF/5VT+/kUY3//CEpsHW3yj50rXA+oKagHrFFaOODp51Dab1wu2Pg0w5f/kpg/hHWLVkXyjVzwboRXuZuPFUKI8sd0vldnn2P17PX4hE6hq8etg+VzU7muKmrSTJQOG3ya+UJmIoXrgWQK6gGv8nd81oOkbKKXpz329kXcXNow93TOfU+z9O5Adz8tscfi75zZSfZlDscpqNurHR4W9z1FCCGEmTGNYiv3EmvfncjRxgG4Xz7EgQMHOPBLJEumLuD4TRnhui1lUy88i9rZ624ubebygP39I1ji3aE7ftpYjsXffXL25cPEKerSq50HUg/oOAcRnpBFVlYRt+QoQuo+oCy1bUDw2BZcWRfBxdyCu7JjNrAlvSPjh9aWQlYIIcoB408japLZHhJAv4VnYeH3zLlnkcebezjrLMXWbc5B4ej29yWjny7U/dDeM2Vo2yCYsS0WsSLiIhP8a2NFNjEbtpDeMZShtaUcKBkrao38jiUnhjF2mhfjAvKI+GQv3VaGMcTX+H9+QgghDM/4W3ulC4GfxaD9zNiBmDmtitgDkXy7cDcqXTG1MWwdTft2oX0DZyysajHyuyWcGDaWaV7jCMiL4JO93VgZNgSpB0qBdXUGLNtJz/hTnIyHkPBBeNubxqCyEEIIw5NdaXmhsKNq696EbtTdHrDYuvoAlu3sSfypk8QTQvggb6QeKE1K7L39aeFt7DiEEEI8bVJsibuU9nj7t0DqASGEEKL0yNiFEEIIIYQBSbElhBBCCGFAUmwJIYQQQhiQZVJSEtWrVzd2HGVWdnY2Hh4eTJgwwdihmKXc3Fzatm1r7DDMlkKhoH79+sYOw6zp86vPszAMd3d3bGykwaih5F/D0cXF2GGUeZaurq7Ex8cbO44ya9y4cfkb0zfeeMPYoZilNWvW8PPPPxs7DLOl1Wo5efKkscMwa/r8arXaRz9QFMu1a9fyv/QKw9BftDk5OdnYYZR5lvpvXI6OjsaOo8yytrbO/1YlOTQMOzs7lEqZ7RZCCFF2yV5MCCGEEMKApNgSQgghhDAgKbaEEEIIIQxIriAvHo82j+zsPLTkkXEDXDwrSKUuhBBCPAbZX4rHkMef/3mJZg0a0KBhe97dn2nsgIQQQogyw2RGtrIvbeXzmZ+x4VgKFRr24J2Z4+hSxcrYYQm9rCOEHejCyv1raelmjVwxSAghRNmhIfVIGHO/PoOdq5akvCYEh/SjvsPT25uZxMiWOmEj49/9EYce7/HBxN44/DSBrn+fx6kcY0dmfnITD/LV5KlsuqIuvECTypFV0wiZ8iGzJ4cwc81JMm9dGijn8u+cPfM5ndydafLGav6U34sQQogyQnX8I7q8EEbVMdOZOGk6I5w/p3OvxZx9ivsyEyi2cok/nMngpfN5K+h5OvQKYclnnbE+uZ0YlbFjMyOaNE5tD2PWkK68PnsD51T3XmRRxfGPuvBCWFXGTJ/IpOkjcP68M70Wn0W/LlrXeZMV/ztNYtx6/v77P3hjzRXd9wQhhBDCxGkSCA+ZzZl279HfTz9bZk2tgeNovG8i4yOv87QuN2wCxZYVvt0H0LLi7eE8LdnpObh3GUKzCkYNzLwonagXOIiQcQHY/2WRJiGckNlnaPdefwrWxVoMHNeYfRPHE3n97qpo7d2FSXO6knUsHhncEkIIYeq0SbtYtiOT2p39uV1SKJwaEeCXRsTSKG48pThM5pitAlqyTq0k9Et/lqwdiI+FseMxQwrFX4650pK0axk7MmuzxP/OqohTowD80qayNOoGPYKc7zxWnW1FrWd8dN8NhBBCiKdDnR5LzKWMImdVFLYe1KzuivVfDsNSXdjDSbUdrXyc7o4uWblSw03Bzej9XMoOwvkptNY0nWJLc4PD/53N5OkLiLiQyzedKrJnz2zaOMnh2LcVd2V7OBUX9pxEbdcKH6e7A51WrjVwU9wken8MUXvHMvZST8b19yM1rjcfvOFhCkOiQgghyonMw/MZHbqfos6Ft64zklXLB1PtL+fVqVOvkIYNjrb37rUssK9gDWm6ZXm6f5arYktZiWaDP+bHQdM4oUtY+zfn8O73o4ga7mPsyExGcVe2h1OTeiVNt7I5UnhdtKdgXcyhybKf2RibhMLNF88KMtwohBDi6XJqP59t+578eUpbR10tpUGtKXx0ljpPo9tpOmD9lEYOTKfYuk1RgQavf8qsJVv457Erujuk2LqtuCvbwymxddSV9Ro1hddFNQXrojVKiwp4VZcD6IQQQpQtNj7N8OW/JOYPYd2iVZF8Ixe8G+H1lI6JMc3ZIItKVPN2pkp9D2NHUg7Y4NPMFzITKbwuJlOwLnrJ8VlCCCGMKmVTLzzt7bEv4ubSZi6nH3DmlqV3B7r7aYm998Su7MscjlNQt1c7PJ7SZI0JFFtasq9GcyJOdecUTG3KATYk/Z0pfWRU617FXdkezhLvDt3x08ZyLP7uk7MvHyZOUZde7TyQiUMhhBDG5BwUTkJWFllF3JKjQqj7oJEB2wYEj23BlXURXMwtuCs7ZgNb0jsyfmjtpzaYYALTiDc58s+utF6YyXPB7zLkWWcyE9LpsmoRL7qZQC1oQgpWthK+iH66UPdDe8+UoW2DYMa2WMSKiItM8K+NFdnEbNhCesdQhtaWcS0hhBBllRW1Rn7HkhPDGDvNi3EBeUR8spduK8MY4vv0SiATKLbsaPXpaeJGnOBipg2eterh5yItYUqdVkXsgUi+Xbgbla6Y2hi2jqZ9u9C+gTMWVrUY+d0STgwbyzSvcQTkRfDJ3m6sDBvCU1wXhRBCiNJnXZ0By3bSM/4UJ+MhJHwQ3vZPdzDHNHalSnu8GzyDt7HjMGcKO6q27k3oRt3tAYutqw9g2c6exJ86STwhhA/y5imvi0IIIYSBKLH39qeFkQoN0yi2hGnQF73+LaToFUIIIUqRjF0IIYQQQhiQFFtCCCGEEAYkxZYQQgghhAFZJiUlUa9ePWPHUWbpr+/h4eHB9OnTjR2KWcrOzsbV1ZXKlSsbOxSzpFarqVBBugMYUoMGDVAo5PxqQ/H09MTaWi5RYyh2dnb522BRMpb6JJ46dcrYcZRZ48ePp27dugwfPtzYoZildevWsXXrVpYsWWLsUMzS5cuXefHFF40dhlk7ceIEWq320Q8UxZKQkEBOzhNfzVk8JpVKxfXr140dRplnqf/GJaMGxaev+vUjA5JDw3B0dMTGxkbyayD6kVmlUo4mEEIIQ5KtrBBCCCGEAUmxJYQQQghhQFJsCSGEEEIYkBRbQgghhBAGJMWWEEIIIYQBmV6xlXeZNW8N4JPjN40dSfmTm8jBryYzddMV1MaORQghhDATJlZs5XLhq9d57d/biUnXGDuYckRD2qnthM0aQtfXZ7PhnAq5KpAQQghROkyq2Mo+/SUfn2hALQtjR1LeKHGqF8igkHEE2Bs7FiGEEMK8mE6xpTrOv+cl89o7f6OS6URVziiQriJCCCFE6bI0dgD5tBn89tnn5L21gGecIowdTRmlJj02hksZRU2/KrD1qEl1V2uknhJCCCGeHhMotrSkRs1jqcM/+KypPYoUY8dTVmVyeP5oQvdnFrHcmjojV7F8cDWsnmpcQgghRPlm9GJLk7yDj1d58d7n/tgaO5gyzYn287exz2+yQ/IAACAASURBVNhhCCGEEKIQIxdbuZz9TygrDjhy8IU1t+6K52BuItFjXuRys8F8vug1alobN0ohhBBCiOIycrFlgUf39/nEM/nudZ2yfuPi/y7o7h/Iq882w0XOTHxMKWzqVZ+Xt6YVsdyWph/sY1dIXaR2FUIIIZ4eIxdbSio2fIGBDe+5K7UiK97+lpp/1xVbbeQ6BI/PmaDwBLJK9Boa1Prj67VylS0hhBCitMhFFgT6kxRUsftZv2ghu1VwfmMY63aeIEUuIy+EEEKUmNEPkL9PxR5sz75m7CjKGQV2VVvTO3Sj7mbsWIQQQgjzIiNbQgghhBAGJMWWEMJs5CYe5KvJU9l0RebAhRCmQ4otIUTZp0nj1PYwZg3pyuuzN3BOJSd5CCFMhxRbQoiyT+lEvcBBhIwLQM5hFkKYGim2hBDmQ6GQ3p9CCJNjef36dRo3bmzsOMqstLQ0PDw8mD17trFDMUtZWVm0atXK2GGYLYWuOGnUqJGxw8inTo8l5lIGRbZSt/WgZnVXrMtYNaXPrz7PwjC8vLywsbExdhhmy8HBgcqVKxs7jDLP0tnZmYMHDxo7jjJr0qRJ1KlTh2HDhhk7FLO0fv16du/ebewwzJZWq+X48ePGDiNf5uH5jA7dT5Gt1OuMZNXywVQrY53U9fnVyoWCDebKlStkZ2cbOwyzlZmZSVJSkrHDKPMslUolVapUMXYcZVaFChWoVKmS5NBAXFxcsLQ0vcvBidLn1H4+26STuhDCDMkxW0IIIYQQBiTFlhDCJKRs6oWnvT32Rdxc2szldI6xoxRCiCcn8zNCCJPgHBROQsk6qYNGjfRSF0KYGhnZEo8nN4UL0WdIkItFClOkVRG7fz2LFu5GxXk2hq1j54kU5DryQghTICNb4pHU17bz6bytJGaeYG2EM3P3raSHm9TpwoQo7KjaujehG3U3Y8cihBB/YTrFljad3xfP5MtoVcG/NXnYtw3l44HVjRtXuachK8OLwR/Mwc0qhed6dmFfXI6u2LI1dmBCCCFEmWAyxVbepTVMXbSdG84OBXObtvUZPdHX2GGZHX2j3rAFm6g8egZBXhZ3F2hSORI2l6/P2OGqTSKvSTAh/erjoFDiWMMfR91Dci7uYJ//ZMY0lEJLCCGEeFwmUmypOPblj7QOi2JqU9mRG4S+Ue/Ojaz+1xjej/Rl/vDp9yxUcfyjLryw6w1+2RKMnzaGzwM70itpF1tG1sJa94i8a1Gs+nQ5q5ecIa1rRxZ2qChtUYQQQojHYBIH3miStvLPBT8wt69uBz9yDmuP3ZADW0vbQxr1ahLCCZl9hnbv9cdPf3Vu61oMHNeYfRPHE3m94IB4S/c2BM/bTNTSuuxeE43qqX8AIYQQomwyiWJLnaWk7Vtv0bVKIj8tnkC/JjUI+kJ26AZxX6NeLUm7lrEjszad/SvcfhBOjQLwS4tgadSNex5rgZNfPeo3dM8f7RJCCCHEo5nENKJV1SDGfRiEfsefdX4zM1/tz5zRr7Ag8Dcm1pPd+m2GadSr4sKek6jtWuHjdLf2tnKtgZviJtH7z3Pq2r8YG9Wc4X39UV9uw4yhNUxjxRFCCCHKABPbZyqwrxHE7I3fcKZmH77fmaArtqoaOyiTYZhGvWpSr6SBjSO2945zWthTQVfnpl1R4TtzOSsDE6GyD54VTGyVEUIIIUycSe45lZXb8UpTe2ZmSm+OexmmUa8SW0ebgitvF7peqZo8ja6Ac7BGaeGAp59Dab+xEEIIUS6YxDFb99HmkqmuhH9jd2NHUg7Y4NPMFzITScu7e69WlcyNXPBu5CXHZwkhhBAlYALFVjaX94QTeTyZ2/v6nLPfs9pmBJPbORk1MlNjmEa9lnh36I6fNpZj8XefnH35MHGKuvRq54HFQ54thBBCiIcz/jSiOomd/xzIkK0Kmr82iWGNIT7BiSlrJtLEztjBmRZDNeq1bRDM2BaLWBFxkQn+tbHSFcAxG7aQ3jGUobVlXEsIIYQoCeMXWxZVGPzjVTpEn+Syyhav2vWo5mwtF8wsbfpGvQci+Ta/UW92fqPepn270L6BMxZWtRj53RJODBvLNK9xBORF8MnebqwMG4Kv8deQciKXlAsxJNpVp7annaz/QghhRkxjV2rhiG+jZ5HmPAb0iEa91tUHsGxnT+JPnSSeEMIHeWNvApPM5YL6Gts/ncfWxExOrI3Aee4+VvZwM4U5fiGEEKXANIotYRqU9nj7t8Db2HGUM5qsDLwGf8AcNytSnutJl31x5OiKLWlcJYQQ5kGKLSFKUZGNvtGQeiSMuV+fwc5VS1JeE4JD+lHfQYHSsQb+BZ2+2bHPn8ljGkqhJYQQZkRmKoQoDfpG39vDmDWkK6/P3sA5VaGLlqE6/hFdXgij6pjpTJw0nRHOn9O512LO3j4BNO8aUas+ZfnqzwiZtZdU7f1vIYQQomySYkuI0vCQRt9oEggPmc2Zdu/Rv6DTN7UGjqPxvomMj7xOfl1l6U6b4HlsjlpK3d1riJbGoEIIYTYsk5OTeeaZZ4wdR5mlz5+Hhwfz5s0zdihmKSMjg+bNmxs7jMd3X6Nv0CbtYtmOTGov8edOq2+nRgT4pTF1aRQ3egThfOt+Cyc/6tVPxf0pXXFDoYu3cePGT+fNyqkmTZrk51kYhre3NzY2NsYOw2zpr+H466+/UrNmTWOHUmbp82dZsWJFtm7dauxYyqzp06dTu3ZtBg0aZOxQzNLGjRuJiop6Om+mTic25hIZRXf6xqNmdVyfrNM3qgt7OKm2o5WP092hZCtXargpuBm9n/OnrvGvsVE0H94Xf/Vl2swYSo2ndDSlVqvl2LFjT+fNyqmjR4/m51kYRnx8PNnZ2cYOw2xlZWXRoEEDJk+ebOxQyqxKlSphaWFhIRVrCeiL1cqVK0sODUQ/amhl9USdtYsv8zDzR4eyv+hO34xctZzBT9bpG3XqFdKwwbFwp2/sCzp9o/KdyfKVgSRSGR/PCnLWihDCpOhHt2QfVzKyXRfiNqf2zC/9Tt8obR11pZYGdeFO36gLOn1jrbTAwdMPafUthBDmSQ6QF8LAbHya4UsmiYU7fZNc0OkbL+mIJIQQZk2KLSFuS9lEL8+iG33bu7Rh7pN3+sbSuwPd/bTEHovnzrOzL3M4TkHdXu3wkE7fQghh1mQaUYjbnIMIL2mn7wc0+sa2AcFjW7BoRQQXJ/hT20pXa8VsYEt6R0KH1kYGtoTZ0OZw/fwprjnVo76brNlC3CYjW0KUBn2j7/3rWZTf6Pt8fqPvnSdSUOcvtKLWyO9Y8sxGxk77hm0/r2JSyF66rfyaIdLpW5gFNcn7PmPUiFlEJntQo7IUWkLcy+S29LnXDvLd0u84qq1O0+e60SuwFg5yiZqnIzeRg2EL2FR5NDOCvJDZrSfwiEbfWFdnwLKd9Iw/xcl4CAkfhLd0+hZmIuvIbIJGJPLP/y2gYyVZr4X4K9MptrQqYr55m36TzhK09GtmdfWR6ZWnRkPaqZ1sXP0vxrwfie/84Uw3dkhmSYm9tz8tpNO3MFm5JB4MY8GmyoyeEUTh9p6pHAmby9dn7HDVJpHXJJiQfvVx0F7hh5C5JDwziYP/msyBBv0Z8XIzpOYS4i4T+XPIJTZsIM+9fpBeP2xiphRaT5kSp3qBDAoZR8B9vWaEEOZBQ26OuuilaafYHjaLIV1fZ/aGcxRu76ni+EddeCGsKmOmT2TS9BE4f96ZXovPkpN1ks1/uNMveATvThiA1RdBvBwWZ/BPI0RZYhLFlvrytwS/GY7tiCW816LCfe1OxNOiQLqKCGFucrjyy38Y170lPZb/qftq+2BKp3oEDgph3AO+cWkSwgmZfYZ27/WnoL1nLQaOa8y+ieOJTFKTZ+lJk5qOWFRoxOC3qnN8Q7RBP5EQZY0JTCPmcjZsDj/frEgX6/WMeXEchy5bUi9oLLMmvUQtO9n7Px416bExXCq61wy2HjWp7motxawQ5YEmk7M//ZsPZy9hv+OLjJu6hY/aePGo/gf393HUkrRrGTsya7PE/053T5waBeCXNpWlR96nZ500Dl/KZoCbDQqlDW613QzwgYQou4xfbGlTOLRF9y3IoTM9h0xhRCM7ru/+gL8H9qVNbCSnVnTFRaqDx5DJ4fmjCS261wx1Rq5i+eBqj9zYCiHKsLzrHF77KbM+/pbYukMIXXyQpQ0rleCEFxUX9pxEbdcKH6e7kyFWrjVwU9wk+lcNK/81kNGfLuKnUQ05tbclMyc3LI1PIoTZMH6xlZdGfIruZ+Mh9GnomD+v6dZ+PJ8GL+Fv/5nLznld6OMq1dajOdF+/jZKv9mMEKJsyOb8txN4c8paVJ1Cmbn+GAHV7EphJFtN6pU0sHGkcHtPewrae6Zj22I83yxLJi4hj3afd0FOtBWiMOP/SVg4UFk/Mq3O427rOHvqdKgNufFcSMl7yJOFEEIUsMK9ZSe6tqvKtV9+5Mfth0l48oYHD6DE1tGm4IK9hQ6aV1PQ3tM6f0eisHbBp6q7FFpCPIDx/yyUzjTt4AdxR4jLvn2nAqWFEoWFB9UqGX/wrWxIYVMvz6Jbzdi70GbuaUpl2yuEMEFKKtR+gfdW/MIfWydR//hMAhu05fW5PxJT5LGcj8MGn2a+kJlI4faeyRS09/SSs8eFeATjF1vY4v/6KJonrSfsaMat+1Sc3XsRlxffor0csPWYnAkKTyArK6uIWzJRIXUfsVHUoL6v14wQoqyx8W5L8PxIjv+6mL9nrmJg0xb0mfIth68XZ6bAEu8O3fHTxnIs/u7XtezLh4lT1KVXOw+5ALIQj2ACxRZY13mbdSu6EvV/w5j13U9s+c8UPjg/iNXLeuNhEhGaOy2q2P2sX7SQ3So4vzGMdTtPkFL0JXmEEGWARaVG9J22moPH1vOW+wFWbIkt8tIPt2kKvnFRuL1nMGNbXGFdxMVbz88mZsMW0juOZ2htGdcS4lFMZI7OGr9XlnKg11XORF8ky2kS6153xVoGtZ4SBXZVW9M7dKPuZuxYhBClTWHvR6e3F9DpIY/RqmI5EPktC/XfuLI3ErauKX27tKeBswVY1WLkd0s4MWws07zGEZAXwSd7u7EybAjS3lOIRzOpPxOFrQd1m3sYOwwhhCiDbhA5qDXDd6YXsdyWhpN+YvOoWg+8/IvCriqtdd+2Nhbxjcu6+gCW7exJ/KmTxBNC+CBvORi+lGhV59k8fxaLfzxBeqUm9Bo7lTGdpZPKY9OqOL95PrMW/8iJ9Eo06TWWqWM643MngRpSj4Qx9+sz2LlqScprQnBIP+rfabz8qOUlZ1LFlhBCiOKqRLewUxi0UY7SHm//Fkh7zyenyc1Ba2V9//FtuRf4athQNnt3pUMXB3avXMi7XTZyIvIPlnd1NY1jfUxAkfkjlwtfDWPoZm+6duiCw+6VLHy3CxtPRPLH8q646hKoOv4RXV7YxRu/bCHYT0vM54F07JXEri0jqWX96OWlQX6PQgghhIHkXPmF/4zrTssey/nzAQfMZfz6Fcf7rub7+VMYP+0zNh7czKuuCaz6eAfJcq7SI/OnSyBfHe/L6u/nM2X8ND7beJDNr7qSsOpjdugTqEkgPGQ2Z9q9R/+CXlPUGjiOxvsmMj7yOtpHLS+lzyHFlhBCCFGqNGSejWDu8HY07DSLEw2msmXDSGreN3+rQe3cg3d7VrkzYqN0bcPLzS1Rq1Tkldti63Hzpz+hw5ke7/akyt0E0ubl5liqVah0CdQm7WLZjkxqd/bnTrMpp0YE+KURsTSKlEcsv1FKn0imEYUQQohSkcf1w2v5dNbHfBtblyGhizm4tCGVirw2hpKK9VtS8d671KlcSrKi4Sut86fAypcnzZ8ugxXr07JwAkm9lIRVw1dorUug6vc9nFTb0crH6e7okpUrNdwU3IzeT8zpGw9dfik7CGebkn8yy+TkZNq2bVvyVyqnEhMTcXd354svvjB2KGYpLS2Npk2bGjsMs6VvOiz5NaxmzZo9oLmzKC3e3t7Y2toaOwyyz3/LhDensFbVidCZ6zkWUA27Yvzac8//wKqMgcwNfvCJDE+bg4MDbm6GbyxeWvnTJZAfVmUwcG4wtXQJzEy9Qho2OBbuNYV9Qa8pUlNuPHR5/oV8S6PYqlixImvXri35K5VTH3zwAbVq1WLAgAHGDsUsbd68mYMHDxo7DLOl1Wo5cuSIscMwa4cPH87PszCM+Ph4bt68aewwsHJvSaeu7Ti49Bd+/HE7zf0H0cbrCY+uzovjh1k76L7qv3R2MY1hrczMzPxBBUMrlfyRR9wPs9jRfRX/7eySP1KltHXU1Ur6C3YX/htUF/SawsZO/dDl1qX0a7C0sLDA39+/dF6tHHJxccHT01NyaCD6QkCKASGEqVNWqM0L763ghbfj2fv1J8wMbEBG6xFMmvh/dKtd4dEHSGszObZsDicHLGdqa6dSaCBetpQ4f2jJPLaMOScHsHxqa5xuJdDGpxm+/JfEwr2mSC7oNUVVv6yHLn/ieq+oz1c6LyOEEEIIbLxpGzyfyOO/svjvmawa2JQWfabw7eHrFN0sKZtzq2ez3ieUKV1vtz/KJfW6ipJ0tSyTipU/XQbPrWb2eh9Cp3TF49YxXrmp18n17EB3Py2xx+Lv9gbOvszhOAV1e7Wjiu/Dl3uUUi8qKbaEEEKI0mZRiUZ9p7H64DHWv+XOgRVbiH1gr6RcLq19l4lHGxPgfplDBw5w4MAvRC6ZyoLjN8vdCNcdj50/XQYvreXdiUdpHODO5UP6/B3gl8glTF1wnJt2DQge24Ir6yK4eOv52TEb2JLekfFDa2Nt+4jlpfRx5GxEIYQQwlAU9vh1epsFD+yVpCF5ewgB/RZyloV8P+eeRR5vsuesc/kttm57aP50GUzeTkhAPxaehYWFE8ibe87irLDCeeR3LDkxjLHTvBgXkEfEJ3vptjKMIbd6TdV6xPLSIMWWeDy5KVyIScSuem08i3WKiBBCmK8bkYNoPXwnRTZLajiJnzaPyj9D7i4lLoGfEaP97ClEaNqKlz9dBl0C+SxGy0MzaF2dAct20jP+FCfjISR8EN739pp61PJSIMWWeCT1te18Om8riZknWBvhzNx9K+nhJjPQQghxW6VuYZwyaK8k82b4/Cmx9/anRZG9ph61vGRMo9jKi2PTR5/wU8JfDn+zqkrviSEEupfSEWqiGDRkZXgx+IM5uFml8FzPLuyLy9EVW8a/ro0QQghRFphEsXXzxGKmLNuDR9NqVLhVV6lTDhN5MoCXP5BCqzTlJh4kbMEmKo+eQZDXPbnVpHIkbC5fn7HDVZtEXpNgQvrVx0GhxLGGP466h+Rc3ME+/8mMaSiFlhBCCPG4TKDYusm53zz47Pdfef5ObwI1sUva03H/EJpVeOiTxePSpHFq50ZW/2sM70f6Mn/49HsWqjj+URde2PUGv2wJxk8bw+eBHemVtIstI2vln42Rdy2KVZ8uZ/WSM6R17cjCDhXlwE0hhBDiMZjAgTe2NBg+5p5CS0cdR8SqeNoOaY7UWqVE6US9wEGEjAvA/i+LNAnhhMw+Q7v3+lPQ9LwWA8c1Zt/E8UReL7iqrqV7G4LnbSZqaV12r4nWlWdCCCGEeBwmUGzdTx0Xwaq4Ngxu4WjsUMyPQvGXESktSbuWsSOzNp397/Q8x6lRAH5pESyNurfnuQVOfvWo39C91K49IoQQQpg7E5hG/Cs1cRGruPTcdJ5xMnYspkWdHkvMpYwiryissPWgZnVXrJ9ofk/FhT0nUdu1wsfpbu1t5VoDN8VNovef59S1fzE2qjnD+/qjvtyGGUNrmOKKI4QQQpgk09tn6qcQV8bSetqzVDR2LCYm8/B8RofuJ7OI5dZ1RrJq+WCqPVGreDWpV9LAxpHCTc/tKWh6rsJ35nJWBiZCZR88K5jeKiOEEEKYMpPbc6rjIlkV+yyTW0up9VdO7eezbV9pv6oSW0cb0Kgp3PRcTUHTc2uUFg54+jmU9hsLIYQQ5YKJHbOlJj5yJX8+8xrPVZRz3Z4OG3ya+UJmIoWbnidT0PTcS47PEkIIIUrAtIotdTwRKy7QYlgbKkmtdZ+UTb3wtLfHvoibS5u5nM559OsUZol3h+74aWM5Fn/3ydmXDxOnqEuvdrc70AshhBCiOExqGlEdH8GK8814r60033wQ56BwErJK+CL66ULdD+09U4a2DYIZ22IRKyIuMsG/NlZkE7NhC+kdQxlaW8a1hBBCiJIwqWJL6fYSa35/GQ9XKbVKnVZF7IFIvl24G5WumNoYto6mfbvQvoEzFla1GPndEk4MG8s0r3EE5EXwyd5urAwbQik2PRdCCCHKJZPalSpsK+NjoCaQ5Z7CjqqtexO6UXd7wGLr6gNYtrMn8adOEk8I4YO8KeWm50IIIUS5ZFLFljAypT3e/i2QelcIIYQoPTJ2IYQQQghhQFJsCSGEEEIYkBRbQgghhBAGZJmSkkJAQICx4yizEhIS2LNnD8uXLzd2KGbpxo0b2Nra0qxZM2OHYpZycnLy8ysMR7/uKhRyhrWhVKlSRdZhA3JwcODo0aOyDS6BnTt3Yuno6MiXX35p7FjKrA8//JCaNWvSv39/Y4diliIiIvKL2dmzZxs7FLN05coVgoODjR2GWTt8+DBarfbRDxTFEhcXx82bN40dhtnKzMykevXqvPPOO8YOpcyqUKECljpSsZaAm5sbPj4+kkMDOXnyJH/88Yfk10BcXV31GwFjhyGEMGFOTk6yDS4hOWZLCCGEEMKApNgSQgghhDAgKbaEEEIIIQxIii1hWJp04uIz85tfC0PQkB4XT6YkWAghTJYUW8KAcrnw5ct0mvgrWcYOxUzlXviSlztN5FdJsBBCmCyTOQ0p+9LPLFu+l1Q7C9Li06na9z3+r7276QQonljOhU18f1Yjv0NDybnApu/PopEECyGESTOJzbQmcRPBnf5Fqy0/M7mWNepr4bz6TDeSf9zH1AY2xg7PNGnT+X3xTL6MVhX8W5OHfdtQPh5YvXTfJzeRg2EL2FR5NDOCvLC4Z5Em9Qhhc7/mjJ0r2qQ8mgSH0K++A/mXb7x5hh8iKtCnqw+rV5RuSE+HlvTfFzPzy2gKMqwhz74tobMGUt2qNN8nl8SDYSzYVJnRM4LwKpxgjoTN5eszdrhqk8hrEkxIv/o4FCSYMz9EUKFPV3zKZoKFEKLcMIlpxPQDi1if5k8Lb+v8f1u4taGHTwyb9ifJsT5FyLu0hqmLtnP46NH8q/sejdHQop1vKb6DhrRT2wmbNYSur89mwzkVhS7LqDrOR11eIKzqGKZPnMT0Ec583rkXi8/m6BZmceL77Xj2C8TTJMr5Ysi7xJqpi9h++FZ+j8agadEO31IstDRpp9geNoshXV9n9oZzqAonmOMfdeGFsKqMmT6RSdNH4Px5Z3otPkt+hk98z3bPfgSW2QQLIUT5YRJbastK3tglrOaT8El8N9AXy5TfiYj1IaC5q2lUgyZHxbEvf6R1WBRTmz6qTYWatIR07DwrcX+doCbjaipW7i7Y3NdNRIlTvUAGhWhY/0kkMYWWaUgID2H2mXas7+9X8Lq1BjKu8USGjY+k94cXmbHlIo1jP2Ln+d+I/V3Dp6u9CXmlDmWlqYbq2Jf82DqMqKlNHxmzOi2BdDtPKj2gEFNnXCXVyh2X+xOM0qkegYNC0Kz/hMjCCUaTEE7I7DO0W98fv4IEM3BcYyYOG09k7w+5OGMLFxvH8tHO8/wW+zuaT1fjHfIKdcpKgoUQohwxiVrGofX7LHzFhvWvPkPvGYuYMWoxrnO3MKOZ7DkeRJO0lX8u+IG5fTvSa+Qc1h67oSubipB5iA86tWBI2IX8EZG71CRtD6VdqxFsSXzY+KGC+9q6aZPYtWwHmbU741/h9sOcaBTgR1rEUg7aBzHx7d4EdOhA+5bVcPFuSpvGlU2jsn8cmiS2/nMBP8ztS8deI5mz9hg3ik4whz7oRIshYVwonGDUSdsJbdeKEVsSHzpCe3/fPC1Ju5axI7M2ne8mGKdGAfilRbD0oD1BE9+md0AHOrRvSTUXb5q2aUzlMpNgIYQoX0xj82zpw8srfyHtemPefH8U21tPYlOHqmVmFKRY1OnExlwio6i9sMIWj5rVcbW+f0REnaWk7VtvYRW1lY2LJ7Bh8Ry6L9zLulH+2P31wQ7PMmvTDIYEBDJMsYMVr/phrS+0dkygy5BDvLJxI73dn7DmVl1gz0k1dq18cLrzVCtca7ihuBnNwRQverbxy783S+FNxQONecbf5SmvbGrSY2O4VHSCsfWoSXVXa+7LsDoLZdu3eMsqiq0bFzNhw2LmdF/I3nWj8L8/wTw7axMzhgQQOEzBjhWv4metL7R2MKHLEA69spGNvd2f8FuNigt7TqK2a4XP3QRj5VoDN8VNog+m4NWzDX76O7MUeFc8QONn/HExjb9mIYQQf2Eam2etilOrZhLe8Esie25g5OjZdG6VyKb9i3nRw+LRzy+LMg8zf3Qo+zOLWG5dh5GrljO42v1zU1ZVgxj3YRD6EZCs85uZ+Wp/5ox+hQWBvzGxnvX9L1V9MCt3wFBdwfWaYiufeC0laPBvvKwrtMa3cLy/2HgUdSpX0sDG0bZQEWFhX0FXyKXpluXp/lVwYoN9m8X82uZJ36A0ZHJ4/mhCi04wdUauYvngavdPr1pVJWjch+RnOOs8m2e+Sv85o3llQSC/TazHfRm2rs7gggQT+JqCrZ94sTRoML+9rCu0xrfA8ckTTGpBgrEtnGAq6N48TbfsTobt27DYOAkWQgjxmEyi2Mr6bQovTs3mi5P96VqpH7+39Kdru6kMnzqU80v/hoOxAzQEp/bM37avhC+iwL5GELM3fsOZmn34fmeCrtiq+sBH2ugLru0aXm3rT82brZj+85biFVp6SlscdXt6jVpT+KB5dR4aXSniYG0Ks9NOtJ+/jRJn6lpb0QAAIABJREFU2L4GQbM38s2ZmvT5ficJ4+tR9UH1v42+4NqO5tW2+Ne8SavpP7OlWIWWnhLbggSjKZxg8jS62s7B2jTm/4UQQjwWE9hm53E1ahuXKjWmmr1+z6SkYqtxLHjDk+u/HSWpyGNlxG3Kyu14pak9OZk5D3mUmoyL0VzQVKWG3RWiz6aQW9w3tPGhmS9kJhaMsBTQokq+oXtNbxp53T+6VqYpK9PulabY52SS85CDr9QZF4m+oKFqDTuuRJ8lpfgJxqcgwaTdTTBaVTI3dK/p3cjr/tE1IYQQJssEii1LXBs0xDF+PyfT7n6N12qtcG/SAFcznUUkZRO9PO2xty/i5tKGuacfVjzdQ5tLproS/o3di3iAmus7J9Fl0AH6bTnEob3TyZ0UyPDVF3nMdyjM0psO3f3Qxh4j/s4LZHP5cByKur1oZxJTvyls6uVZdH7tXWgz9/Rjfn4tuZlqKvk3xr2ISz+or+9kUpdBHOi3hUOH9jI9dxKBw1dzsXgJxrtDd/y0sRy7m2CyLx8mTlGXXu08MIUMCyGEeDwmMY3o1GEuK1/vw3uDJ5P2dgCVzq/ni/MD+HJlWyo8+ullk3MQ4QnF6bGiK2r2RPBHpfZ0alRw0HnO2e9ZbTOCj9s5PeDxtwut/fTdsInQFk4oGMSKbVqGBgbyunY7Xw6o9pCREg1q/WiO9t75LFsaBI+lxaIVRFycgH9tXQWSHcOGLel0DB1KbZMYdnEmKDyhWG2Csi/vIeKPSrTv1KjgoPOcs3y/2oYRH7fjgRm+VWjt77uBTaEtcFLAoBXb0A4NJPB1Ldu/HEC1h+REU5DgQlOytg2CGdtiESsiLjLBvzZWut97zIYtpHcMZahpJFgIIcRjMoliC0tPXpi/l05J54g+ex26fcDmkS484EQ8oU5i5z8HMmSrguavTWJYY4hPcGLKmok0ue9MOZ3M3/go9BB9wjcxoaXTnWO08o/h0hVcw/qNZ1Pgt/S574xELarYA0R+u5DdKl0BsjGMdU370qV9A5wtwKrWSL5bcoJhY6fhNS6AvIhP2NttJWFDfE1kpSouNUk7/8nAIVtRNH+NSQUJxmnKGiY+OMH89lEoh/qEs2lCy/xCK1/+MVy6gmtYP8ZvCuTbPvefkahVxXIg8lsWFiSYsHVN6dulPQ0KEszI75ZwYthYpnmNIyAvgk/2dmNl2BB8y3aChRCi3FFotYWGLMQTGjVqFP7+/vk/nxp1OpeiT3JZZYtX7XpUc37A5QvuodVoUSgf/IiHLXscmqx4Tp2MBy9/6nnbl/q89DfffMPmzZvzfz49atIvRXPysgpbr9rUq+b88MJfq0GrUD74d/CwZY9Dk0X8qZPE44V/PW/sSznBsbGxtG3bNv+nMAxfX1+ioqLyf4rSN2DAAHr06JH/U5S+hQsXcurUqfyfovjkO3JZZOGIb6NnedxN98OKqZIUWnpKe2/8W3iX6DVMjwWOvo149v/ZuxP4GK/1geO/yb5LRKwJEfuuDZW6uCpEtU1R+5JQtFWl+hcVu6K0tmttXUtraYpLbUlTsSuKWEqp2KVCCFkQSSbbzPxnompJJiGRTJbn28/7Sc07y5l3Zs55znnPe57nP8D6g6m8BFo6RlZUrOtOcTvCQghRkhSCCfJCCCGEEMWXBFtCCCGEEPlIgi0hhBBCiHxkcvfuXTp06GDochRZN27cyJj8+sMPPxi6KMVSXFwcpqameHh4GLooxVJKSgpqtVqObz5KT0/PItm4eFkqVaqEhUWxzqRrUDY2NpQtq28NR/G8TGxtbZk3b56hy1FkzZo1Czc3N7p06WLoohRL27dvzwhmJ0+ebOiiFEtRUVF89NFHUgfko44dOyIXfeefyMhIkpOTDV2MYishIYE7d+4YuhhFnomW9GrzoHz58ri6usoxzCdXr17lwoULcnzziW7JB3Nzczm++cjMTBahFaKkkzlbQgghhBD5SIItIYQQQoh8JMGWEEIIIUQ+kmBLCCGEECIfSboeIQoFDekpKaRrID3hHpQuj410hYQQolgoJMGWhqTLQSxefZJk40Ru3a9AJ79PaFtJruIRJUP6X9/x3ltfcTZFQamWs9n2fSdsDF2oIkOD8urPzJ22mF/OPsC+USeGTxhGO2epP4QQhUOhCLZSryyhs+dPdD8QwsDKRkT/MhD31/oy+9haulc0NnTxhHhuadFHCZgXRJmhX+Bd4cnvrpr7pwKY88NFLB01xKQ3YpBfN+pY6xa7TOJUQCheq47wUxMnzGT9yxeSFr6C/v1+pmL71nhZ72fVopF4BZ4l5M/ltHeU4UEhhOEVgproAQcnj2N3RR/ectbFfkY4eY6gn8UGhk89QqKhiyfE81DHc353ANN82zNg+lauKJ9exFJ55mu83g6g8rBJjBk7icEOC2nXaTGXU7U7U2/w++WLLGxbFodGH7Dur1TDvIciKYFjK87Qdd0G5o4fxcQFgRz9uQ+OUauZuScOWUpUCFEYGD7YSrnGr4fjMCtf4fEcFfPKeNQyI+rnjZyXhYFFUWBkR23PvviNaIPVs/vUUWzxm87Flp/T3dVUe4MZ1XuPoOHhMYwKiUVjVpMPV/7KhehINr/1O599sJ5bagO8h6JIrcLh3ZF0rPRoFNEIx+Y9eNVEhVKZLsGWEKJQMPxpRIURxtogS3k7ikRtA2ObEXCZYOtkDdGXuKPr5EvaK1FUKBQ8exZQE7OPZXsSqbGk7j/zsBR2DWjjGs+EpYe49643DrobzSriNXYG7Tvs4Kb2e1+hJH3vVQ+IuHSdBH1BpsKCctWq4vjsOVajUtRpUurpp7p/nRjT+vT0cCwEvUkhhCgMwZZZFdq+UY5J3y1ja0RvPnLVFSmNxIQ0bZBlh6XUlqKg5LbBz4Ey/ADnVJY0c7Z73PibOuLmpCA57AjXU7TBlvnDmzWqFEyrN6XEze1OPMncof4c0TdvwKwmQ1Yvx6eKaQ5PlMbVTatJ6D2HQdVzuq8QQhQMwwdbWNNs6mpGHO3Ix/96k+O93bFLv8/ZAwlQvSVuloYunygxXlqD/zTV/VvEY46txZM9B2OsbLQRVfwtoo/68/qI63Qc0R3X+5F0nvoB5UpaJ8OuFXN3Hc7z06RHbmLang6s/rEdpUvaMRRCFFqFINjSNjtOXsw5Hovf+TAiVWWpXmofXRd/R/MP30IuRhQF5iU1+M8ysrDVhlpqVOqnZxCp0tXaAM4a2ybT2RkYQYzCCZfyNshXPnc0iadZNuMcvZZPwMNOLukUQhQehafvZ2RFxbpNaFrflt+nj2V/FT/m9alcOKJBIfLA3PkVXEgkOj798Y0aJXH30qBiAyqYGWNToSquJTnQuhtEp/JWWFnp2Uo3Z86FbK7STLnCuumbcfYfT/tyfx/FtPvEKuVKAyGE4RWuWEbzgJPzetAr2IOleyfT1NrQBRIliq7Br9ODHfF69ls0ZurhffjVerEJVSYVW9PBVcPm0zdJ7WhPxqNTbnAyUkGtD1tSrsRGWE9w8GZLVFLuHpt2nZ9GjuGPFsPofOMEoTe0t6Xf5VRQKLX8J9JapiIIIQyscARb6fGEH97M8kUrOWrXha0nP+b1MtICiQKWlwb/EbUK3ViK5skzhhb1GDTcnW9XbuPa6LrUMNXGWpe2EvzgDfz71aCkzYV/qdRx7PZrQ7dFl2HRBmY8savchwe47CCnE4UQhlcIgi0NSRGnuGzUhGErfSgvlx+KokijJCI0hLWL9qMkhcCAjTTu6kWreg4YY0r1If9jydn+DJ9YgRFt0tk26yBvrgrA16UQ/ASLMqPSeC64hGaBoQsihBD6FYKaXoGVWyvauRm6HELkgcKSyh6d8Q/UblntN6tKr2V76XjzPOdugt+WvlS0ko6FEEKUBIUg2BKipDDCqmJd3CsauhxCCCEKknSthRBCCCHykQRbQgghhBD5SIItIYQQQoh8ZHLv3j06duxo6HIUWX/99Reurq6GLkaxZWFhwa1bt/j3v/9t6KIUS8nJyRl/5fjmH7VajUIhS1Dkl0qVKmXUEyJ/2NjYULZsWUMXo8gzsba2ZsqUKYYuR5E1d+5cjI1lTbD8ogsGdD/2kSNHGrooxdLt27cZNmyY1AH5qFu3bmg0mpzvKHIlMjLyn06DePkSEhK4c+eOoYtR5JmYmppKrzYP1q9fj7m5uaGLUazZ2trKdzSfREREZHx/5fjmH6kfhBAyZ0sIIYQQIh9JsCWEEEIIkY8k2BJCCCGEyEcSbAkhhBBC5CMJtoQo0jSkxl7h9LloUg1dFCGEEFkyYLCVRvTRFYybEMQt1TO71Pc5tXoifuO/Yvo4P6asP0eiXDktxFNUcYdZ8MlgpoXEUc6tDGaGLlBB0ii5GjSdgW+1wKPlO3w0Zyc3sog206KPsmLcBIIyVTJCCFFwDBJsqePPsztgGr7tBzB96xWUTwVSSs587cXbAZUZNmkMYycNxmFhOzotviw9d1FgNMqrBE0fyFstPGj5zkfM2Xkjn75/uex0JJ1iuvdgLnedwaQ+TSlnXpIWzUwjfEV/+q2IpmprL14rdY5lI71oOng7seq/76KO5/zuAKb5tmfA9K1cUUpvTQhhOAYJtozsauPZ148Rbawy7VNHbcFv+kVaft4dV1PtDWbV6T2iIYfHjCIkVipMUQDSwlnRvx8roqvS2us1Sp1bxkivpgzeHos650c/t9x3OtTc2uTHnKimOB+dzbiv13Ly3sssWSGXcIwVZ7qybsNcxo+ayILAo/zcx5Go1TPZE/f3QTSyo7ZnX/xGtCFzLSOEEAXLoHO2Mqew0BCzbxl7EmvQrq7No3th16ANrvHbWHroXkEXUZRACcdWcKbrOjbMHc+oiQsIPPozfRyjWD1zD3FZxPuq+CjupWX9XKqE28SlZN1JyH2nI5FzP/9J2W6DGDxyNL1Mv8G7RwCRJeRMmVrlwLsjO1LpUeIGI0ea93gVE5USZfozx1pbx5SkMT8hROFUyCbIKwk/cA6VZUWc7R4XzdTRDSdFMmFHrpNiwNKJkkCNyuFdRnasxOO2vDk9XjVBpVTybFsOiZyY2hZ33wDCnznPqIrZjX/LZgwOjs52ROzFOx13UaebUL5RNWyNbWjg8zFVz2wlLCm379kwVA8iOB8WRpie7dzVWFKziFONStWhSaUnZ6ipuH89BtP6nfBwLGRVmhBCaJkYugBP01aat+LB3BaLJ+tMYytstHVrvHZfuvafkvxC5EzFg4hLXE/QF+YosChXjaqOZs+MfBhRqk4TSj31VPe5HmNK/Z4eZG7LrXltWhBf+LbBs7+CPSv74GqmC7T2MNrLlxM9AwnsXPYFezWPOh3N9HQ6YnFtX5P4k9rORy8nzBVGmDvVwMn0hV7E4BJPzmWo/xFtuJo1s5pDWL3chyo5va+0q2xanUDvOYOoXsSOgRCiZChkwZYRFrbmuvMEqJ/q0apI17aZZtZmhW0oThRaiZycOxT/I3qbcmoOWc1ynyrk3JZvYnVCb+YMqp71fc2q4rNqD/TTBlzvK9gxqwJLvX043kMbaI1yx/aFz2Pl1OlIpPyY2fT+YD7fbv+E+ucP0mTKOOpbvOjrGJZdq7nsOpzXZ0knctM09nRYzY/tSkv9IIQolApZsGWO8ysu8GM08emPb9Uo4zLmxFRsUKFkXd4u8sCOVnN3kfe2PJJN0/bQYfWPtCudTVNurgu4dqPu04K61ZJpNmknwbkKtHRy7nQY27gzas0y4iKjSG+5EC+rkhhmaEg8vYwZ53qxfIIHdjI5SwhRSBWyGtqEiq074KqJ4PTNxxNgUm6cJFJRi04ty/0zj0aIfKdJ5PSyGZzrtZzxHnY5TrRWJVwjLFxNZTdLboVd5q6eSfM5+7vTkZhDp0NhRmnnypQtooHW3aBOlLeywkrPVrr5HC5ks95GypV1TN/sjP/49pT7u2JIux+LsgRdmCmEKBoMWkurVbpaUcOTnXeLeoMY7n6Ljduu8bCtSuHS1mAevDGKfjVkXEs8r7sEdSqvtyG3sipN8zkXslk7K4Ur66az2dmf8e0fBflp3I9VZjnZXRW7l7FefQntFsyJEweZlDYWz4HruJarxblKRqfDwXsLUUlJJOnZ4g75UUvPTz7t+k+MHPMHDduU5caJUEJDQ/ktZAkT5p0h+cmoWDc6qP2jkVVjhBAGZJDTiBplBKEha1m0X6ltQQIJ2NiYrl6tqOegbUJMqzPkf0s42384EyuMoE36NmYdfJNVAb64FLKTnqIwc8B7SxS5u0Avjes/jWTMHy0Y1vkGJ0JvoJsbdPdUEKG1/JnY2vKpez8KtI503UqQv3vG6ay+K3eh6eeJ5wANu7/vRZVs+gn6Ox3fslLb6Rhdtwam/3Q6/Et8p0Mdtxu/Nt1YdBkWbZjxxJ5yfHjgMg66YEujJCI0hLWL9qPUHrvAgI007upFq3oOxSJQFUIULQYJXxSWlfHo7E+gdsuKWdVeLNvbkZvnz3ETP7b0rUgRPVMiihw1cbv9aNNtEZdZxNNt+YccuOzwzOnERI5/7c+JLlsIGt3k8byhjDlc2oCrfzdGBXmytkvmKxKl05E7RqU9WXBJw4Ls7qSwpLJHZ/wDtVtBFUwIIfQovNW2kRUV67pT0dDlECWMEaU9F3BJk21T/gRrms08wk6FUeY5XeZu+K45hk9W+5BOhxBClBSFN9gSoqjQE0zluO95SKdDCCGKPOknCyGEEELkIwm2hBBCCCHykQRbQgghhBD5yOT+/ft069bN0OUosq5cuYKrq6uhi1FsWVhYcPv2bby8vAxdlGJJqVRiZGQkxzefZU42Ll4WZ2fnjHpC5A8bGxvKli1r6GIUeSaWlpaMHDnS0OUoshYuXIixsazck1+Sk5MzKtLhw4cbuijF0p07dxgxYoTUAfmob9++aGRV1Xxz48aNjHpC5I+EhISMekLkjYmZmZn0avNg69atmJubG7oYxVqpUqXkO5pPIiIiMoJZOb75R+oHIYTM2RJCCCGEyEcSbAkhhBBC5CMJtoQQQggh8pEEW0IIIYQQ+UiCLSGKHQ2psVc4fS6aVEMXRQghhIGDrbRojq4Yx4SgW6hys18I8RRV3GEWfDKYaSFxlHMrg5mhC5QvNCivBjF94Fu08GjJOx/NYeeNrMPKtDtHCfjSj8+nLuLHXZdJlBUYhCiB1Nw/tZqJfuP5avo4/Kas51wBVwYGSkStJv78XgLXzWbY5BBc5g5k0gvtF+Jl0ZB4YROzpi1lx8UUKrzeB/8JA3ittP6109T3tAHN1B+5nPLw8Soq0WvKaFqVfnl9l5TIX1k+/wDuE8fjYfPkHhV3j61k9v+uY2ufTIxFa4Z/+iYuuqgq6RTTvQcT/eWvzHvDvtgOW6eFr6B/v5+p2L41Xtb7WbVoJF6BZwn5czntHf9+1xoll9Z8Srexl/Fe+gPT2jsX08BTCJET5Zmv8Xp7Hx/8FswgVw2XFnryRqcY9gUPoXoBVQwGqo+NsKvtSV+/EbSxys1+IV6O1MtL8P3gfyTUboNXY2MOz/uQZq2/5A+lvkekEf7DBL779RR//PGHdvuTyNKtaezwkn5Kqnuc3bmSSb3eZuisXdxKf3p30smptO0STEO/CYweN57uMSNp/eHP3FGrubXJjzlRTXE+OptxX6/l5D31yylToZLAsRVn6LpuA3PHj2LigkCO/twHx6jVzNwTx8O+ahoRAb15fcBROm0KYooEWkKUXOootvhN52LLz+nuaqq9wYzqvUfQ8PAYRoXEUlDjWwbu/CrIPotFTvuFyIsHhK68Qr8Na5k91p8v/rud0BWemJ9ZzH//SMr6IYm/893Bt9hw6CAHDhzQbr8SOKU5dll8T1XxUdxLy/ppVAm3iUvJ4mdubE+9dv3x/8w9iwfdZKPfLG54jeCdCsban4cNr344CJsfhzHnjzjO/fwnZbsNYvDI0fQy/QbvHgFEFrfz72oVDu+OpGOlRyOPRjg278GrJiqUyvSMilN1Yy2DPtyCxeAlfO5ug1QhQpRcmph9LNuTSI12dXl0kkBh14A2rvFsW3qIewVUDgOdRhSiENA23I6d/49m5R413CZUbNOFuooTJGQVCKHmzi9f8s1Pv7Hx5mE6dH2fTwa9SQ3rrPosiZyY2pZeN0aza1Vfqj4xtKKK2Y1/u4FETDjKuvfKZtnjySqXnjrmV77br6TmB7V4NOBrUq4pTe3/4n/rLvDvdBPKN6qGrbENDXw+puqcTYQl+VLJ9sUOS4FQPSDi0nUS9A2+KSwoV60qjmbPHAejUtRpUurpp7p/nRjT+vT0cNQeyzQuBMxgZ3IpvMw2M+ydEZy4YUJt7+FMG/se1S0l9BKiKFI9iODS9QT0VxnlqFbVkWerDGX4Ac6pLGnmbPe4rjV1xM1JQXLYEa6neONQAEkeJNgSxYCK+GuXuJGo72doQqkq1an0bFBkZE9dd/unbkqL+4v7pV7n3TqWWTxPOkqzf/PxIDP2b9vM/M9+Yv68/vx0cBldKj37U7LmtWlBfOHbBs/+Cvas7IOrmS7Q2sNoL19O9AwksHPWgZY+ydpK44LKjjYVLB+P1ugqjTJw7dA1KvrUJP7kdVJ6OWGuMMLcqQZOpi/wAgUp8SRzh/pzJFHPfrOaDFm9HJ8qOb2BNK5uWk1C7zkMqq69r+YOJ4LDtIe/HR19xzO4gSWx+6fylmdXmkeEcH5le0pLvCVEkZN4ci5D/Y+gv8oYwurlPjxbZaju3yIec2wtnqxtjbGy0VbI8dp9uqkaEmwJ8Rw0Dzj+n08Yd1TPqT9FabwWbGByk5wmACbx54+/YD88gHfKZhUGmVGl40i+7qj9X/UDzq4dSVefpfh+1IEWgd0p9+xDzKris2oP9NMGXO8r2DGrAku9fTjeQxtojXLH9gUbfd1pyYxKw/yJFzKy0P5b+zc+Grvus+n98Xy+3f4J9c8fpMmUcdS3eLHXKDB2rZi763CenyY9chPT9nRg9Y/tyLg+IS2em3e1fxv60qW+bUYw69RqFPMHLeFf381h73+86OIo0ZYQRY1dq7nkpsowsrDV1ppqVOqnz1ao0rWdczNrzApoMpUEW6LoU9jTZv5u8tp0p15ayYzrQ1izshFZjWs9xciWen0WEXz3FDX91/JHYne8sjpdZ64LuHaj7tOCutWSaTZpJ8G5CLQyXtLcJqPSSH9qAE9XiehexxpzW3dGrVlGXGQU6S0X4mVVXK9HfEiTeJplM87Ra/kEPB5NmjO2poxuYoYqnYy6NeNmK2q2rgH/vUn4XW031rGwDvcJIV42c+dXcOFHouOfuNpIoyRON6G2YgMqFO+rEYUoXDT3j7BgoRK/JR9R67lHg0xxadeJmsaJpGRz4Z8q4Rph4Woqu1lyK+wyd/VMms+JuXNjKpFA9IMnKg3VA+4kaHt91d0opZt6pjCjtHNlyhb2QOtuEJ3KW2FlpWcr3Zw5F7JZkjXlCuumb8bZfzztH825S7tPbEopGrd2hchTRKY8urMCI2MjFMblqGIv/UshiqK7QZ0or6++0G6lm88hqyrDpGJrOrhqiDh98/Eizyk3OBmpoFanlpTTv8rPS2XgGvnvXrlG38WXOe0XAt3lJmzyLqe/4bZxpf++BP0PTwpj5Vf7eHXCZ3iUeviTUCdGE5+u9yH/UKckoKjsQVU9AZoqdi9jvfoS2i2YEycOMiltLJ4D13EtF0u7m1RqTXuXNMLPRfNP0ZTXOR1lyevvNcD6xZ/ScBy82RKVRFKSni3uEH619HQ5067z08gx/NGwDWVvnCA0NJTQ30JYMmEeZ5ItqTvgE16N2UzAH48+cyWXD16j9Dsf00ombAlRJDl4byFKX32h3eIO+ZFllWFRj0HD3bm1cRvX/u7oplzaSvCDNxjVr0aBLQtjoG6eBmVEKCFrF7FfqX3jgQFsbNwVr1b1cDB+nv1CPEFRhveCbqNnxlb2Uv9izYjJhLcbRt2rxwm9qv32pURyICiad778EKNzK5i+zgSfcT7UMb7Or9vO49Tak7r22i+iJoFTa/dTZ9QaamcxwfJRoHWk61aC/N0zlofou3IXmn6eeA7QsPv7XlTR80tXZ/QyjHhqERiL+gwa2oDlG3Zx89NqVDbWcP/4en4v48Oa9mVKxhIH6jh2+7Wh26LLsGgDM57YVe7DA1x2UGDm8CkbV16k+0f9mTb2Axon7OC/V/uy7rvOmefVCSGKOVOqD/kfS872Z/jECoxok862WQd5c1UAvi4FFwIZKNhSYFnZg87+gdotN/tFgdOkk5KiW8conYR7ULq8jaGHRfNOHcP24W/Qd8lfsGQ9U5/Y9eqCK/yfeSoXNs3gq+mm2Pr0pIbVLqb0HMge89f5aEwvaqbe4G7tb1jh45LFDymR41/7c6LLFoJGN3m8DlfGHC5twNW/G6OCPFnb5ZkrEjWJhB8KZtW3v6O7onHt6kDKd/TEw9Va+6swo/an65l7dgDDpzkyrMkd1s68x7ANC2mV1UJfxZFRaTwXXEKzILs7meHacymhnW5zMewaSXZj2Tgg8yXhQogSwqwqvZbtpePN85y7CX5b+lKxgKdayAQG8RzS+eu793jrq7OkKErRcvY2vu9kk/PDCjujMrRfHI5msf671Bt3lOuDFFSoZIYxA9h+x5Mw7a81xdqZWrVdsNP7C7Km2cwj7FQYZR5xMnfDd80xfLLap7Cm6r+688Ue7ZbV01rU4P1V++gaEcaFmIZM3/4xTuYSRWRFt+5OrVfLGboYQohCwQirinVxr2iYV5dgS+Qs6RQBoV6sOvITTZzMSsbpqkdMSuFc6Yl/2lWhYbMqz/fYrIKp59mXI2NsKzegSeVcP4EQQogCVOTPBIkXkxZ9lBXjJhB065k8Lur7nFo9Eb/xXzF9nB9T1p/jUVL01Bu/c/niQtqWdaDRB+v4KxeTu4UQQoiSSoKtkkIdz/ndAUzzbc+A6Vu5onxy5rXmifFdAAAgAElEQVSSM1978XZAZYZNGsPYSYNxWNiOTosvZ1wqa1bzQ1b+eoHoyM289ftnfLD+lt6UCUIIIYR4mgRbJYWRHbU9++I3og3PrqOujtqC3/SLtPy8Ow+Tolen94iGHB4zipDYx0GZWUUvxs5oT9KT65UIIYQQIlsm9+/fx8fHx9DlKLIuXLhA1apVDV2M56dQPDNXSEPMvmXsSazBkrr/5ETHrkEbXOMnsPTQPd71dvjnvqoUU6o3dS6wtUksLCyIjo7m3XffLaBXLFmUSiXGxsZyfPORRqNhwIABWFrmmJdA5MLZs2d58803DV2MYsvGxoayZcsauhhFnomuAhg0aJChy1Fk/fe//y2w18pt1vPsKQk/cA6VZTOc7R4PdJo6uuGkSCbsyCUOHRzO8OsdGdHdlfuRnZn6QbkCGxJNTk7G1NRUvqP5RBfIjh49Wo5vPtIFWj179sTJycnQRSmWZs+ebegiFGsJCQncuXPH0MUo8kzMzMykV5sH27dvL7Aea26znmdPxf1b8WBuy9NJ0a14mBQ9lUbLdhIYEYPCyYXyNgW/qqy9vb18R/NJREQEkydPluObj3T1g5eXFy4uLoYuSrG0du1adO2YEIWZLP1QhOQ263n2jLCwNdctWc7TSdFVPEyKboaRsQ0VqhaDdbWEEEIIA5AJ8iWeOc6vaHvcz+QC1CjjeJgUvUKBzc8SQgghiiMJtoqQ3GY9z54JFVt3wFUTwembjx+ccuMkkYpadGpZDklHKYQQQuSenEYsQh5mPc/jk+hOF6K7QurxTRb1BjHc/VtWbrvG6Lo1MCWFS1uDefCGP/1qyLiWEEIIkRcyslVSaJREHNnMt4v2o+QqgQEb2Xv2LhnryJtWZ8j/ltA0cDgT1+xi5+qx+B18k1U/+FKASdHFS6MhNfYKp89Fy3poQghRCBgw2Eoj+ugKxk0I4tnMMRrlVYKmD+StFh60fOcj5uy8IY1GXiksqezRGf/AWDSaBPZO6sEb9Rz+OUVoVrUXy/b+xLDGDjg08WPLrvm8W1EiraJGFXeYBZ8MZlpIHOXcyhTb+XYp13cw+4N3aNnsX3QYOIMdkWlZ3i/tzlECvvTj86mL+HHX5X9SUAkhREEySGuqjj/P3sB1zB42mRCXuQyc9MTOtHBW9O/HzxXb09rLmv2rFjHSK5CzIX+yvL2jDMXlJyMrKtZ1x0BJ0Q1EQ3J4MP+ZsojgsCTKvNaLMZM/xKO0/plq6nvagGbqj1xOefh4FZXoNWU0rUq/vG9nSuSvLJ9/APeJ4/F46kJQFXePrWT2/65ja59MjEVrhn/6Ji66qCrpFNO9BxP95a/Me8O+2P5WVFGBjBq5h9p9P2fq28dYNPRz2h+Hc8f8qf0outQoubTmU7qNvYz30h+Y1r7gFuIVQohnGSTYMrKrjWdfP9SbZxFy6el9CcdWcKbrOjZ0q5Qx6jLykzfxrfU2q2fuYaZXN8q80IKdQmRPdXMTI8cdoXHfMUx9sIevPhqCZ3gZrgZ2o1yW0Uoa4T9M4Ltfk7G31H0ZjXB4ow+NHV5SaKO6x9k9W/hh6lBmHGjCprHjn9qddHIqbbucZlToBnqUV3J0jAetP0zn8Pdvodrkx5yopow9OptxofXoPrgHr9gXt5ArjZsnE/FZOpcmpXTHvxUN1DsI6rmbS8pHwVYaEQG9eX3QVYYe+o1J7jZItSGEMCSDnidSKJ6tAtWoHN5lZJNK/5zeMnJsTo9XTfgxQUm67hSA1JripUnjxsl0Bi6ZySu2ui/Wv3CLDqT6178RkaINtrJaqzbxd747+BYbDo14PIqihyo+igeW5bHPYpFZVcJt7puWpbT5M19oY3vqteuP/4MV2mDr2QfdZKPfLG54beedCrpfiA2vfjgIm1rDmDPcg/Y//0nZbtMYPLI+f817k7d6pBH6iy+VitXlpKa4dOjF4+VBNaQ8SKWs1yBe+XsEUHVjLYM+3ILF4MN8LoGWEKIQKGTdXiNK1WlCpScbMdV9rseYUr+TB46FrLSiqDOlyts9/g60dNQo72tw8+5ETYus7q/mzi9f8s1PX9LRsxufzf+FS4n6kiclcmJqW9x9Awh/ZsKhKmY3/i2bMTg4Wn/qpUwdEe2rx/zKd/uV1PSs9U8ycZNyTWlq/xf/W3eB5HQTyjeqhq2xDQ18Pqbqma2E5fXq1fyiekDE+TDCwvRs564Sm5rTBCsNSedX4f99XZas6I1zRlCZxuWAGexMLkU9s80Me6c5jRq3oseEjVxWyoQtIYRhFPoZ0GlXN7E6oTdzBlXnhbLQiBJERfy1S9zQG/iYUKpKdSpZZxetq4n//RvG7e/Ejxv/Taksh0PSUZr9m48HmbF/22bmf/YT8+f156eDy+hS6dmfkjWvTQviC982ePZXsGdlH1zNdIHWHkZ7+XKiZyCBncu+UG8nOfwAF1R2tKlg+Xi0xtQRtzJw7dA1KvrUJP7kdVJ6OWGuMMLcqQZOhfVHk3iSuUP9OaI/9xRDVi/HR1/uKfU9Tv44nXGT5rEtPI01bUtx4MB0mtve5URwmPbwt6Oj73gGN7Akdv9U3vLsSvOIEM6vbE9pGeoSQhSwwh1spUeyadoeOqz+kXYvcfKxKGY0Dzj+n08Yd1TPMI6iNF4LNjC5iVXW+1WxHPl+MmMmL2JfpIadnctw4ueh1DR/9o5mVOk4kq87av9X/YCza0fS1Wcpvh91oEVg98xzvMyq4rNqD/TTBlzvK9gxqwJLvX043kMbaI1yx/YFG33dacl4zLE1f+KFjCzQZVsiPhq77rPp/fF8vt3+CfXPH6TJlHHUz3KErhCwa8XcvOSeMrLnFZ+Z/NJ3ImeX+9DqwxmM3PAJh3yTuXlXu7+hL13q22YEs06tRjF/0BL+9d0c9v7Hiy6OEm0JIQpW4Q22NImcXjaDc72WM8HDTuZdCP0U9rSZv5tcN93Gjnh8sIC9AyZzZKY3rcdOZOrh/vzQOpt8kEa21OuziOC7p6jpv5Y/ErvjZZvF/cx1Addu1H1aULdaMs0m7SQ4F4FWxkua22hDLXVGzsrH1Kh0/za3xtzWnVFrlhEXGUV6y4V4WZWADorChnoD5jNtSTBfnr6l/SydKaP72FTpD3N9ZhxnK2q2rgH/vUn43XRwLKzDfUKI4qqQ1sYpXFk3nc3O/oxv/yhdTBr3Y5V657gIkWfGDnj830I+rZLAxavxz/EAU1zadaKmcSIp2XwxVQnXCAtXU9nNklthl7mb9ZJQOTJ3bkwlEoh+8EQSS9UD7iSAXXU3Sul+KAozSjtXpmxhD7TuBtGpvP7UU1almzPneXNPGdtTpaIDleqU09ZoDjRu7QqRp4hMeXQHBUbGRiiMy1HFvvD2L4UQxZdBa2R1Rpdcw9PTVtO4/tNIxvzRkDZlb3AiNJTQ0N8IWTKBeWeSZYRLZKaJYZN3Of0Nt40r/fclPN9zmZbBrVxZ3KpkNUyVmTolAUVlD6rqOV2nit3LWK++hHYL5sSJg0xKG4vnwHVcy8UqvSaVWtPeJY3wc9H8E24pr3M6ypLX32uA9Ys/peE4eLMlKomkJD1b3CH8amV1uaeGlNthnI1U/lNvaO6GsjXmLcZ3cdb+y4K6Az7h1ZjNBPzx6DNXcvngNUq/8zGtZMKWEMIADNLN0ygjCA1Zy6L9SkgJJGBjY7p6taKeg4K43X606baIyyxiw4wnHlTuQw5cdpBgS2SmKMN7Qbd58QvvNCTfOke4wo3a5S0yvluqqH3ssB7EhNdtM/YnnFnB9HUm+IzzoY7xdX7ddh6n1p7UtTfW7k7g1Nr91Bm1htqZ5nc9DrSOdN1KkL87dtoX6LtyF5p+nngO0LD7+15U0bN8xMOOiBFP9UQs6jNoaAOWb9jFzU+rUdlYw/3j6/m9jA9r2pcpIb+NZE592R6PRYm8Pmgkvq85kBj1AK/V3/KO08O+o1nNT9m48iLdP+rPtLEf0DhhB/+92pd133XWs3aaEELkL4MEWwrLynh09idQuz2rtOcCLmkWGKBUouRR8vvktvxrSTr/HjKSXo2tib8Nw9aO55WMufSpXNs0g6+mm2Lr05MaVruY0nMge8xf56MxvaiZeoO7tb9hhY9LFj+kRI5/7c+JLlsIGt0kI9DKkDGHSxtw9e/GqCBP1nZ55opETSLhh4JZ9e3v6K5oXLs6kPIdPfFwtdYGU2bU/nQ9c88OYPg0R4Y1ucPamfcYtmEhrexKRqgFljSbf4HIwWe5lmhO+eq1cS1t9kygaYZrz6WEdrrNxbBrJNmNZeMAR8xKyiEyBE06KSnpj/sGRqaYmxmXkA6AEDmTCQyiBLOi+beXuDH0LBFKKyrVrE3lUk/+JMypN+4o1wcpqFDJDGMGsP2OJ2HnbpJi7Uyt2i7Y6f0FWdNs5hF2KowyNzjmbviuOYZPVvsU1lT9V3e+2KPdsnpaixq8v2ofXSPCuBDTkOnbP8bp2YVRiztdWql6TXNMK6WwKEetV8sVSJFKNhWRP3bF6+sILC2M0CgjuVFtMWFbOyEXfgrxkARbomQzsqZS/deopG+/SSmcn9hpYleFhs2qPN9zZxVMPc++HBljW7kBTSrn+gmE0CON6KMBzAsqw9AvvKnwZPYB9X1OBczhh4uWOGpiSG80CL9udbBWpJBa6z8cO+OGlUJD9Kb+jFS0kPXMhHiCzGAQQogSQp2Wikrfvvjz7A6Yhm/7AUzfeoWnF9xXcuZrL94OqMywSWMYO2kwDgvb0WnxZVKxompTXaBFxsUqB7aoebeFo5xCFOIJEmwJIUQxl3rrN74b0YEm7y7nLz1LjxjZ1cazrx8j2mRe/FcdtQW/6Rdp+Xl3XHXLlJlVp/eIhhweM4qQ2MdRmSb2IFtU3rSQ84dCPEWCLSGEKJbUJF7expyBLanfdhpn600geOsQquWwpmvmvJwaYvYtY09iDdrVfbTQrwK7Bm1wjd/G0kP3/rlf7IFNpHm3wklaFiGeYhIfH8+AAQMMXY4iS5c0183NzdDFKLYsLCyIiYmha9euhi5KsaRb08rExESObz4yNjbOMrF4/kkn9uRPzJ82k7URtfD1X8zRpfWxN875kVlTEn7gHCrLZjjbPY6iTB3dcFIkE3bkOineDphrYjm4KZV3Zr5Yzs+8qlSpEitWrGDjxo0F+Kolx19//UWjRo0MXYwiz8Tc3JwePXoYuhxF1vLly9FoNDnfUeRKcnIyRkZG8h3NJ7pA9tixY3J889G+ffsKrI5IubqW0R+O5ydlW/ynbOZ0mypY5jnOU3H/VjyY22LxZBRlbIWNGcRr9+kW2TWLO8jG5HeYUcCLmUVGRtK4cWOaNm1aoK9bUoSEhJCenp7zHUW2MoKtbt26GbocRZauIrW0tDR0MYq10qVLy3c0n0RERPDVV1/J8c1HI0aMKLDXMi3bhLbtW3J06W/88stuXq3bl+YV9Kyc+9yMsNBlO1erHuab/IcqI0+nmbVZxkiWwt6Lb1aZYWeAU4ivvPKKfIfzye3btzl//ryhi1HkyZl1IYQoJoxsavD25yv57c8djK1zhime9WgxYA6/XErIQ15Zc5xfcYHEaOKfGODQKOO4lwYVG1QgI5wztsLOSlYTEiIrEmwJIURxY16RFoPmEnLmGIvfSmR178a4dxnP2pOxvPgJIRMqtu6AqyaC0zcfJ/VMuXGSSEUtOrUsR66ngwlRQkiwJYQQxZWxPQ26TmTd0dNs/rgsoSuDidCz9MMjD/Nyap5Oy1lvEMPdb7Fx2zUePjyFS1uDefDGKPrVyOtpSiGKPxnzFUKI4k5hhWvbT5nXVv9dNMoIQkPWsmi/UhtLBRKwsTFdvVpRz8EYTKsz5H9LONt/OBMrjKBN+jZmHXyTVQG+uEgrIkSO5GciRJGmITX2Kufv2FG7jhMyxlCy3Qvpi8fAvTzQs9+i/li2//wJ1bNYa0thWRmPzv4EaresmFXtxbK9Hbl5/hw38WNL34pYybkRIZ6LAYOtbHJwpVxnx8IpLNh6mrs29Xn3/6YwwqsSOazFJ0SJooo7zDcTVhLbfBBDurqVuEBL8+B3Fk/5njDlw3+r061o4T+N3lUf1xRp0UcJmBdEmaFf4F2h+M8ssn8zgPOR+fgCuiTgdd1zTAIuhHiaQYItXQ6uvYHrmD1sMiEucxk46YmdqigCR41kT+2+fD71bY4tGsrn7Y/DuWP41y5pzYkwHA0Pfl/MlO/DeNiWq0m3aoH/tN5UfalRf24S/2r3JZ1iuvdgor/8lXlv2JfAyZfpXF8/gW9338PB+uG7t6gzlDEuf3846njO7w1k3exhTA5xYe5TlYwQQhQsgwRbj3JwqTfPIuTS0/vSbp4k0Wcpc5uUykhk2qqBmh1BPdl9SSnBlig46ddZP+Fbdt9z4GFbbkGdoWNweYmBVradjkeJf/d9wG/Bg3DVXGKh5xt0itlH8BA3Yjf5MSeqKWOPzmZcaD26D+7BK/YlKORSnub7XzwIODSBxhZZ7Deyo7ZnX/zUm5n1bCUjhBAFzKC1c1YpLExdOtDr70BLR5PygNSyXvi+YpPpvkLkF+Xp7/nFI4BDvx3gwAHdtpOlPVyy7J2o4qMy1hvKiirhNnEpWa8envvEv4mc+/lPynYbxOCRo+ll+g3ePQKIVOX+/RYtamJ2fMm8TXPo+kYnhsz4idP39Lx5bR0jKZGFEIZWqLvCmqTzrPL/nrpLVtDbufjPtxCFhDqGHV/OY9OcrrzRaQgzfjqNvrYcEjkxtS3uvgGEpz69RxWzG/+WzRgcHJ3tgpIvnvj3Lup0E8o3qoatsQ0NfD6m6pmthCXl6t0ajOpBBOfDwjLyi2a1nbsaS2qWcaqKJKMWfPxxeypFb2fx6G40cvPmm0eTt4QQopAppFcjqrl38kemj5vEvG3hpK1pS6kDB5je3E56qeI5qXgQcYnrCfrCHAUW5apR1dEs83dKlYRRi4/52PQQOwIXM3rrYmZ0WMTBjZ9QN1NmJmtemxbEF75t8OyvYM/KPria6QKtPYz28uVEz0ACO79oYt6cEv/G4tq+JvEnr5PSywlzhRHmTjVwKmJXkCSenMtQ/yPacDVrZjWHsHq5D1UyvS9TKnuP4CtvdD0yrv48hT7dZzC05zw8j49BZhsIIQqbQhpsGWH/ig8zf+nLxLPL8Wn1ITNGbuCTAwORAS7xfBI5OXco/kf0NuXUHLKa5T5VMl/laloZ7xFf8bAtv8rPU/rQfcZQes7z5PiY2pmv+jOris+qPdBPG3C9r2DHrAos9fbheA9toDXKHdsX7iHklPg3kfJjZtP7g/l8u/0T6p8/SJMp46if1dylQsyu1Vx2Hc7jkyiscPOeTuCai1TrsoG9UaOoXVkqCSFE4VJIg61HFNjUG8D8aUsI/vI0t1LBWXI+i+diR6u5u8h7W+6G9/RA1lysRpcNe4kaVZss23JzXcC1G3WfFtStlkyzSTsJzlWgpZNz4l9jG3dGrVlGXGQU6S0X4lWiFzwyokzLnjS2mkJiqm4kU4ItIUThUgRqaGPsq1TEoVIdysnpAWEIRmVo2bMxVqmJpGYz+UqVcI2wcDWV3Sy5FXaZuzmkRdHvORP/Kswo7VyZskU00Lob1InyVlZY6dlKN5/DhdScn0dHk5aIyr4uDcsWsXOpQogSwaC1dFY5uDQptwk7G4ny0Y2au4RujeGt8V3kFKJ4AXcJ6lReb0NuZVWa5nMu8HxtuYa0RBX2dRuiry1Xxe5lrFdfQrsFc+LEQSaljcVz4DquPWew8LSSkfjXwXsLUUlJJOnZ4g75USurDlbKDQ5sCeFM3KNINJXLG9ZhPngcLe2eua9udFD7R5P1BaFCCFEgDHIaMbscXMmnvqS9xyISXx/ESN/XcEiM4oHXar59x6koDMOJQsMB7y1R5OYCvZQbB9j2pz2t2jagtO4XknqZDevMGTyzJc+25TqPAq0jXbcS5O+OnQL6rtyFpp8nngM07P6+F1WyGZXVn/j3W1Zuu8boujUw/Sfxr3+JT/yritnLl7192aF4lffH9qchN4myG8/6MY34Z5aBRklEaAhrF+1HqT12gQEbadzVi1b1HIpFoCqEKFoMEmxll4PLstl8LkQO5uy1RMzLV6e2a2nM5BJEUWBUxOz9kt6+O1C8+j5j+zeEm1HYjV/PmEZZTRhM5PjX/pzosoWg0U0yAq0MGXO4tAFX/26MCvJkbZfMVyRK4t/cMa7kwy+3WxN27gZKiwrUqF0Fh2crCYUllT064x+o3QxTTCFerrQ4wq/cxbaqG2XMpVEsagphtW2EVcV6NJXkW8IgjKnk8wu3W4dx7oYSiwo1qF3FIZuA35pmM4+wU2GUeQkJczd81xzDJ6t9SOLfvDC2daHBay6GLoYQBSLt2lpGfn2XzgOrcqj/VMpMXsKHNc0NXSzxAgphsCWEoRlj69KA527L9QRTOe57HpL4V4hiJDe5UJM4/vVkwtocZF6TMjT2WU6TUSF02dwRRxngKjKknyyEEEK8BOq0VPQlm9DlQt0dMA3f9gOYvvXK44vAMvydCzWgMsMmjWHspME4LGxHp8WXSdX+d/tiNI8ubraoWB2TsANcS8nf9yJeLgm2hBBCiDxIvfUb343oQJN3l/OXniVfcp8L1YqGXepx6b/ruZCYyPXTF4k3scVcWu8iRT4uIYQQ4oWpSby8jTkDW1K/7TTO1ptA8NYhVMthqbcXz4WaiNtHWwn+KJWN3/zAvj+vU8qzPVVL9kXJRY5JfHw8Q4YMMXQ5iqzTp0/j5uZm6GIUWxYWFsTFxdG3b19DF6VYStT2lE1NTeX45iMjIyM+/fRTrK2tDV2UYunUqVN06NChAF8xndiTPzF/2kzWRtTC138xR5fWxz7Xa4rklAv1OineDWnc/TMa3N7KB+/W5IvNTck8PpY/dN9bJyenAnq14svE3NycN99809DlKLKioqJQq7NZVlzkSXJyMhqNRr6j+SQmJoYDBw7I8c1H27Zto3Xr1jg6Ohq6KMXSlStXCqwOTrm6ltEfjucnZVv8p2zmdJsqWOZ5knpOuVDjSU+/x1971vD9puu0W72c7hULbrU4XYcsOjq6wF6vuMoItqRXm3uHDx/OWJFc5B9dIyXf0fwRERHBf/7zHzm++WjMmDG89957uLjIUhX5ITg4GF07VhBMyzahbfuWHF36G7/8sptX6/aleYW8ns/LORdq+r07KBr04ysva5n7U0TJ5yaEEEI8ByObGrz9+Up++3MHY+ucYYpnPVoMmMMvlxLI/dhazrlQbcrUpGYFCbSKMvnshBBCiBdhXpEWg+YScuYYi99KZHXvxrh3Gc/ak7Gk5/zoZ5SMXKglnQRbQgghRG4Y29Og60TWHT3N5o/LEroymAg9Sz88oj8X6i02brv293paj3KhjirxuVCLC1lBXgghhMgLhRWubT9lXlv9d5FcqCWbfIxCFGkaUmOvcv6OHbXrOCF9YCHyz72QvngM3MsDPfst6o9l+8+fUD2LtbYkF2rJZsBgK5scUU9Iv7GeYZ9fY8iKz2lgUbAlFKIwU8Ud5psJK4ltPoghXd1KUKCVTmTQ18zaHvXM/BhTKnceg59n2X/muKRFHyVgXhBlhn6Bt75KRojnZP9mAOcj8/EFJBdqsWWQYEuXI2pv4DpmD5tMiMtcBk7Sc8e0cFYMeJ//nuqDjyxlJQpKeiRBX89ie9QzU11NK9N5jB+eZV9mo52bxLTafUmnmO49mOgvf2XeG/Yla/Jl8lkWj1/GgXKNqWLz9wFT3eVkyDna9Jj6MNBSx3N+byDrZg9jcogLc/VWMkIIkf8MEmw9yhGl3jyLkEv67pXChe9ncrZedYxPFWTpREmXfHYx45cdoFzjKjxuy08Scq4NPaa+vEAr+07H34lp933Ab8GDcNVcYqHnG3SK2UfwEDdiN/kxJ6opY4/OZlxoPboP7sEr9iUj5Eq+cpxyC37n2L8d/wkyVRFLaPXGEXxf+TvdiZEdtT374qfezCz9lYwQQhQIg87Zypwj6jHlmf/yn7j3GfuvML79sQALJUq4ZK4cL8eC34/xb8d/mnIilrTijSO+PGrLn6SKj+KBZXnss5inoUq4zX3TspQ2z/xdz67T8U9i2s1/J6blYWLaMf1HEdJjFTY//0nZbtMYPLI+f817k7d6pBH6iy+VSsCZMot6Axn21C0qIret5maLL3n12c9HW8fkeYFvIYTIo0LZFdYkHGfBwnQ+Ht4UO6kpRYGyoN7AYU8EWlqqSLatvkkL31fJHGslcmJqW9x9AwhPfXqPKmY3/i2bMTg4OtsFD188Me1d1OkmlG9UDVtjGxr4fEzVM1sJS8rN+zUc1YMIzoeFEaZnO3c1llRNzs/z8POJpLmPO7b5XmohhHhxhe9qRM19Dv1nKdafLaCxlYK7hi6PKKJUPIi4xPUEfWGOAoty1ajqaJbjyIcqchurI5sz2T2rptya16YF8YVvGzz7K9izsg+uZrpAaw+jvXw50TOQwM5lX7BXk1Ni2lhc29ck/uR1Uno5Ya4wwtypBk5ZjKwVZokn5zLU/4g2XM2aWc0hrF7uQ5Uc3lfG53P9dSY1tXvpZRRCiJehkAVbauL2zGR1hc9ZWFcuPRR5kcjJuUPxP6K3KafmkNUs96lC9m35w1NU11+fhN623KwqPqv2QD9twPW+gh2zKrDU24fjPbSB1ih3bF94dDanxLSJlB8zm94fzOfb7Z9Q//xBmkwZR/0i9pOxazWXXYfz+iy6z2cVER4Tea3UyyiVEEK8fIUr2Eq7zHf+Kwm1Pcrb6/++6eZR0qLDGPbODV7xWci371crQZe4i9yzo9XcXeS9LY9k26oIPCa+RrZtubku4NqNuk8L6lZLptmknQTnKtDSyTkxrbGNO6PWLCMuMor0lgvxKqkL8mg/n5DVEbw2ziP7z0cIIQyocAVbxuXoMHkW5eNU/9yUdPwav4Zrb+/dh4axu3IAACAASURBVNdeKS05okSBUkWGsDriNcZ55NyUqxKuERauprKbJbfCLnM3TRts5apn8Hdi2h/1J6bNeFqFGaWdK+fmBQqFu0GdqNNjB/F69ls0nsrhfX7UyuYYqm6GsOqvpox5vZRMhBdCFFoGDbYy5YgyKkX9t3tT/4n73C+1kk/XVuMtbbDV3KrgyyiKqrsEdapDjx16m3IaTz3MPr9a2YyUqrgZsoq/mo7h9VLZN+Wq2L2M9epLaLdgTnxWmsD32+I5UMOu73pS5YUDrkeJaTdnJKbtaP/wCR4lpv2wmCSmdfDeQlSeJvVrP59tKwl396e5vZ7PRzc6qP2jeZ6J9kIIkU8Mcu5BlyPqyOZvH+aIuqrLEbWXs3dVOT9QiOfmgPeWKJKSkvRscRzKNtBCN2zCtpXhuPdvjr62PONufwdaR7puJdDfHTuLqvRduYuJaWPxHLCWa6n6H6sjiWlzKePzucor77fAIdMFnUoijmzm20X7UXKVwICN7D17F6llhBCGYJCRrZxyRD2p1Lu7SblTAIUS4hmqm9tYefUVPm/hkM0pqkSOf+3PiS5bCBrd5PFSJRlzuHah6d+NUUGerO2S+YpESUybR0ZOvLf+d3qUc8z8+SgsqezRGf9A7WaIsgkhxBOk2hZCDyOn91j/ew/KOWZ3CtGaZjOPsFNhlLnBN3fDd80xfLLahySmzTOFBWWcJYucEKLwk2BLCD0UFmV4rrZcTzCV477nIYlphRCiyJN+shBCCCFEPpJgSwghhBAiH0mwJYQQQgiRjxTx8fGazz77zNDlKLJ+//13nJyccHFxMXRRiqXw8HASExOpX79+zncWL0x3bE+cOEGrVq0MXZRi69dff2Xfvn04OzsbuijFkp+fH5cvX6ZMmTKGLkqxdPHiRTQaDbVq1TJ0UYqs+fPnY2Jqakrz5s0NXZYi6+rVq1SoUEGOYT4xMjLi7NmzcnzzSWxsLDt37pTjm4+2bNmS0ViJ/HHz5k2qVKlCo0aNDF2UYkmpVBITEyN1RB6YmJhgYmFhwcCBAw1dliJLN7JVt25dOYb5xNLSMmP0RY5v/oiIiGDRokVyfPPRF198YegiFHuvv/46vXr1MnQxiiVdsHX+/HmpI/JI5mwJIYQQQuQjCbaEEEIIIfKRBFtCCCGEEPlIgi0hhBBCiHwkwZYQRZqaB5E3SVQbuhxCCCH0MWCwlUb00RWMmxDELdWz+zQ8+P1bPh86lKEZ2xAGj1pDeJohyilE4ZUW/j092o7hWJKhS1I4pEUfZcW4CQRlrlSEEMJgDJKIWh1/nr2B65g9bDIhLnMZOOmZO6RfZ/2Eb9l9zwHrjHDQgjpDx+BiaoDCihJKF/AvZsr3YSgz/q0m3aoF/tN6U/Wlfg91nY4A5gWVYegX3lQwfmKX+j6nAubww0VLHDUxpDcahF+3Olg/ymydGk7QhsuoJZ28rlLh/N5A1s0exuQQF+ZmqlSEEMJwDFJNG9nVxrOvH+rNswi5lHm/8vT3/OIRwKEJjbVhlhAGUAABf/adDiVnvvbi7X0f8FvwIFw1l1jo+QadYvYRPKQ6ZiRzcdM2bLq0x3ndypdXqKLKyI7ann3xU29mVlaVihBCGJBB52wpFIrMN6pj2PHlPDbN6cobnYYw46fT3JMzAqKA/RPw/3aAAwd0206W9nDJsneiio/inp5T3KqE28SlZL16+KNOx4g2Vpn2qaO24Df9Ii0/746rLsAzq07vEQ05PGYUIbEaks5uYHf5bniWl2Gtp2jrlCxqFSGEMKjCN0FelYRRi4/5uH0lorcvZnS3Rrh5f0OY0tAFEyXGCwX8iZyY2hZ33wDCU5/eo4rZjX/LZgwOjia7+euZOx0aYvYtY09iDdrVtXl0L+watME1fhtLfz3Od18Ec+XAUr6euZLjEb+zev46Libn6t0WGqoHEZwPCyNMz3buaiypkvVGCFEEFb5usWllvEd8hbf2fzVJV/l5Sh+6zxhKz3meHB9TGzNDl08UESoeRFzieoK+MEeBRblqVHU0yzwS8ijgNz3EjkBtwL91MTM6LOLgxk+oa/nsna15bVoQX/i2wbO/gj0r++Bqpgu09jDay5cTPQMJ7Fz2BXs1SsIPnENl2Qxnu8ePNHV0w0mRTNhxFXPGfEqMUht5JJfm6NobNG7ekDKF79f8QhJPzmWo/xFt+Jo1s5pDWL3chyoyd1MIUcQU6upZYeWG9/RA1lysRpcNe4kaVZvKxjk/TgjdiNPJuUPxP6K36abmkNUs96lCprb7RQN+s6r4rNoD/bQB1/sKdsyqwFJvH4730AZao9yxfeHzWiru34oHc1ssnozSjK2w0b54fFQ6zq+2oJbutiQFFUuF0rBpXUoX6l9zzuxazWXXYUOXQgghXr7CXz0blaFlz8ZYTUkkVTdIIcGWeC52tJq7i7y23c8d8JvrAq7dqPu0oG61ZJpN2klwrgItHSMsbM1BrUL91GkzFena34CZtdnjkTKr5iw+1jw3LyKEEKKAFL45W5loSEtUYV+3IWXl9IEwhEcBf+rfAb8eqoRrhIWrqexmya2wy9zN9bpw5ji/4gKJ0cSnP75Vo4zLmIhfsUGFYnk6/W5QJ8pbWWGlZyvdfA4XUnN+HiGEKGwMGmypVbqWS8OTnfeUGwfYEnKGuEeNTOplNqwzZ/C4ltgZoIyiqLpLUKfyehtuK6vSNJ9zgedru3MO+FWxexnr1ZfQbsGcOHGQSWlj8Ry4jmu5Cg5MqNi6A66aCE7ffPwEKTdOEqmoRaeW5YrlAK+D9xaikpJI0rPFHfKjVk5Rpm40UPtHIxPphRCFiEFOI2qUEYSGrGXRfqW2BQkkYGNjunq1op4DxOz9kt6+O1C8+j5j+zeEm1HYjV/PmEaZZiYLkQ0HvLdEkZuF1XUB/7Y/7WnVtsHDeVCPAv6ZWQf8jwKtI123EuTvjp0C+q7chaafJ54DNOz+vhdVsgkSsup0WNQbxHD3b1m57Rqj69bAlBQubQ3mwRv+9KtRHMe18kijJCI0hLWL9qPUHqvAgI007upFK22lUhwDUyFE0WKQYEthWRmPzv4EardnVfL5hdutwzh3Q4lFhRrUruKAmSycU3SpHxAZZUSFitZF4Zw1unlRLxbwJ3L8a39OdNlC0OgmGYFWhow5XNqAq383RgV5srZL5isS9Xc6tOGBaXWG/G8JZ/sPZ2KFEbRJ38asg2+yKsAXl8I/07LgKSyp7NEZ/0DtZuiyCCHEMwphtW2MrUsDXnMxdDlE3qUR/n0P3jowimOrWmOT8wMKAeMXDPitaTbzCDsVRpmXkDB3w3fNMXyy2kf2nQ4ds6q9WLa3IzfPn+MmfmzpWxGrohGxCiFegEZ5lZ/nTmPxL2d5YN+ITsMnMKydc7Gcm1lSFcJgSxQXqeFBbLisLoJfshcM+PUEUznuex5GVlSs607FvDyHEMLg1GmpaEzNMp/W/v/27gWu5vt/4PjrdL8oJURCyDWMYZrhZyLMDHO3akYzc91fJncbY8MMm81ctiUNG4Zaau4bM3KdLUzGlHKL6J465/zPKZdwjig5Xd7Px+M80Pd7zvn0dc7n+/68v5/v5515ju8GvcnPTp1o52nNbysXM84zmMjwv1nRyaGYXBEQeSl+50GRQ53EkSUz+PbO0vqqLKxa+zN3YI2n+z6ZV4kIWkhI+ZF80K0y99dJPkbQ/FWctnRAHZ/Fc75+9KlvnRNcpJ/mp7Ay9OrkjJTuE0KUVrcu/s6qeR/x5clurAseTq0HbrJJPvgdf/Vey7o+VbL713EjOuNTtyuBc3cy17MP5WUaTYkgQXMxlRXzI1O/2sHRP//kT+0jSkWzNk/z2quKxFM7CJrlQ6fBs9n8b9p9E7hJ+4tPPLsSVG0U0ydOYvowe77o2IMlZ7R3z6USuW4Hlfp4IKX7hBClj4qUM2HMH9KGhh1mEek2ldDNDwda2v2U9q8xrnuVuwNZI4dW9HveBGVaGllyV22JIafCYimN499uwT1oH1ObWOSxr5LES0lYVrJ7eKV0zbbkyzcxrVgO84dGT0bY1vPAy0/FxnnhRN23TcWlTX7MPt2GjX1dcl7XdSBjG09k0Phwen58ng9Cz9M4+hN2nT1E9BEVi9Y64de/Dnm1Vgghiq8srh1dz6JZc1kTXRcf/yVELGuInd5bYo0oW785ZXP/SHmTmHhTGvZ3x0HSISWGSXJyMuPHjzd0O4qtiIgIatWq9UzfUxW/lY8W/sTOoJc57NkDr2Hv0LOxne5b3FMOM7PDAC5M2M5Krxq5Jlwqid/hT8ch0UyNWMvrFfV9qxU8XCc5nt3Ld5JSeyn36iTb0qi9C4lTlxGxaDETR8eSU7ovgjUXmtCqcfl8RfYWFhbcvHmT4cOH5+PZIi/a77+5ubkc30KkPb4PFxsXT0vlypWzj7GhZZxdw4ShU1if1gH/GRs53r46lvn4b888+xOByQOZ7+uqY4D87FlbW1O+fHlDN6PYMzE2NqZhw4aGbkex9ffff5OZmY+lwpVJREfFoL9OsgWOtWrgoOM2OGWqEa3ffRfTfVsJXjKBzUvm0GXxXjaMaMDDdZJfYFbIB/i092CQYicBb7hoAi5NoLVzAp4+h+kfHExPvYGWHmnn2HNSiWVLZ+7VSTbFoWYFFOkniEioTPdWLtk/TVU4UfZAY1o0KJevYCs9PZ2MjAz5jBaS69evExoaKse3EK1duxa1rLJaaC5evJjdRxiaacXmdOjUhohlv7Nlyw6eb+BFq8pPeD9hViw/zdpJl8Dv6ViuaKS1UlJSiI+PN3Qzij0TS0tLGdUWQGRkJGXK5GNRg5SjLBjpj/46yXUYHrgC7+oPj21Mq3Vj7MfZZZJJPfszM97oy5yR/VnocYiJ9R7+cpvV8CanTrIHbym2Mq/yMrp5H6KfJtAa38zmye+WU94kp06yBffXSS6jCeQSNdu0y//njDStWi2hoKX7KlasKJ/RQhIdHc2yZcvk+Baijz/+2NBNEM+AUZnadH0/gK6j49i7ah4zPNxIdh/GpInv0Ll2mbwnSKtTOL58DicHrGCqu23B7mIWRY7M2TIU27Ys2F7gMslY1ezG7ODVnK7Vi3W7LmmCrWo69zTXBlw7VLzRugG10lsyfVto/gItLSMLcuokq+6fNK/MQqUJt6zNisaITAghnjlzJ1r7LiD8ren8tfFzZg1swuRq/Rk/5f/o09RBz0k3g3/Xzmajsz9TOt0px5XJzWtZ2DhYyp1sJYD8H5YARuXb0L+JFbdSHlWIT0ny+ROcU1WjpuVFTpxJIP91kp3JqZOcyL06yWrSrt/QvKYTjZ40dS6EECWNsR2Nek9jbcRxNr5bkQMBoUTr7HQziVk/jol/NqZ9xQscPnCAAwd+J3zpVBb+lS4ZrhJCMluGkhBCj/r92JqoZ7tFE2b+sRu/PCvvaqgzSVHa0aBxRT07KLm2axKeXgfoE3qY98oF81YHD4aot/NN/+pPvkqxiRPturig3nicuFvdsct+gQwuHI1FUXcobRylGp0QQmRTWOHSYTQLO+jaqOL6Dj/a91nMGRazbk6uTY5D2XPGXoKtEkKCLUOx78amS/kqk8yFPWH8bdeWDo1yJp3fOrOOtebDmNtGZ5nk24HWfnpvDsG/mXYugBcB29W86eHBYPUOvh3wqIBLRU6d5PvKJOPmO4ZmXwUQdn4CDWqbapoVxebQJF72fxOpkyyEKG1uhHvhPmQXSXq2WzScxC8/j8D1vmm4RpTz+Jwo9efPoIXCkCTYKm6U8ez6aCA+WxU8/9Ykcuok2zLlx4norpN8iE/8D9NrUwgTmt+bdJk9h0sTcA3qM54QjzX0euiORDVp0QcIX7OYnDrJQWxo0hvPtm7k1Ekezg9LIxk0ZhqVx7YnK2weezuvJMinqnyoDEmdRUZGluZ/L4vkG1Cu0mNMzBVCFJhd5yBOxRq6FaKoMuB5MZOrEUEsDCnPyA+6UVnXlafMK0T8sIwf/lRTo8mLdO7hgat1KU+qGlfBe8tl2p04yYU0CyrXrkd1ezP9qWbrlszdvw2F0cN7mNf0YfVBb53btJPvLau509M/GN11ks2oMWA5u7rHcepkHPhtwsvJSk7sBpXFf9+8zisfR5KhKEubT8P4tkfxKP9dMJqBwdmfWTBrCVsik7B7rgdjpo6io7OkWIUQRYNBgi1V4il2Ba/l01EfEl51AUOmP7iHpvOMWs3oPpM4020Zq2Z1QvrNXIxtqNroBR6/TrL+APVR2x6HkZUTDZqVgDLJGbH8umIRe5pNY4r7owMU1Y0/+Hzm95zJXtpHjZIqDJgxgbZPcV2cjNhfWbFoD82mTeH+5ihJOBjApz/EYGOXTrxFO8aM7kxV7fcj9RhBBzxZuX89zSs8IgAvYTLPfcegN3/GqVM7PK1/Y+XicXgGRxL+9wo6yRLcQogiwCA9kZFtPTy8/Bjb3krn9szoIAa+OJiIHj8RMkMCLVGYlNyI3EbA9AF0HTmP7Rez8tg/k3OrpvLNr8dyalL++Tex5drRxP4pfZWUN4jcFsD0AV0ZOW87DzYn9ehMOvQKpbHfVCZMnkLf+HG0G/ozV1Rw68IRzpz+gg4V7Xnu7bX896ibU0uMZA5+9xe9165jwZTxTPs8mIif38DhUiBzd15HlhIVQhQFBh326SxhobzAGt+hbLIYxtL3m1GmtAzPhYEYY+fWkUH+79HscXZPOcI3e19h3b697NmzR/P4leAZrbDV9VFOvMQNPetrKJMvcz1DRyhgbIdbx0H4v6ejNco4NvjN44LnWF7VXndXlOH5ob6U+X4U8/9Mx6zOUAJ+/YersRt55ch7vP3jRfQVKCgxVErsXxtH9yp3y/ji0Kofz5soSUvLkmBLCFEkFLkce+aZIOZsS6esmxkbR71Kq+ea0LbfVDacSZOOUxQeTeCfd1yv4sqWj/hy/Ud09+jDe4u2EJWiL5xJ4fDMDjTzCeLcAxkmZfwO/Nu0ZFjoVb3BkK6BiCr+V775LY06HnW5kxM2cWxBC7v/+GHtKdJv/8zMyZNJczqRejyOYpPc0pavOnWCEyf0PE6e5dotHT2AUVnqN69y3920ypsxxJs2pIe7Q9Hr4IQQpVIRu3FMTcLhUE5gTcfuPkwZ1gjLa78x8xUPereKJvxUAJ3KSapLPEhJ4vkoLugNfEwoW92VKtYFPfVmkWb2P971NeO3sI0sem89ixYOYv3e5fSq8uBXyZoXZoXwgU97PAYp2BnwBi5m2kBrJxM8fTjcP5jgnhWfKBhIP7eHf5S2tK9seS8wNHWgZnk4v+8USeomWGRvUKPMMMW1hfOTr6FmKAUoX3W/TM7+FEjywPn4uhaFMr5CCFHkgq0sEuMSNH82xqdXQ2y0Z6IKbRm/yJelL33D/F2f4dnLodRM/BWPSZ3Eoc9GMDlCz7plinJ4fr6OD5vrniP4+Myo3n0cn3TX/FWVROSacfT2XobPO11oHdwXxwcjJ7MaeOcUpcTjLQVb51VmWTdvDvXTBFrjm2HzhB9k7WXJRMyxMc/1RrdLJ5EYw77xL/JRbHfG9nXhZmxPZr7tWHwyO0+lfJW2ju9PzNrZhcDvO1JE6vgKIURRC7aMsS6vvfVKSZZKe8kg52xkVacdtfmauHMJmnDMARmvivso7Gi/aAcFP1U/ASMb3N5YTGjCMer4r+HPlL542ujYz1wbcO1A9UZrGtRKp+X0bYTmI9DKfkvzMppQS6X5buT+6e1FZ83taT5rG8Gx8SgqVKVSmdK3ir865TjL55xkwIqpuOuaRCeEEAZSxMZ+Rtg3aYcLsRyLzbj7U4WRMUYKYxyr2xW16FCUaqZU7diDOsYpZDxiJroy+TwnzqmoVtOSiyfOkJDPopTmzk2oQjJXk3LdoqhM4koy2LrWpKxZGSrXcCmegZa2fFUlK6ys9DzKtWL+P4+YgZbxL2tnb8TZfwqd7pSLyrzJtbQSf4uAEKIYMGiwpcqpA3PfxHeLBoMZ8Xw8G4P+1JxWcqSd2cv5cq/ybttycglRPEwdz0/dHPWfqMu4MGh3ct6vkw+qjGQU1dypYaF7u/LaLiZ5enGgTyiHD+9leuYkPIas5Xw+Zq6bVGlHp6qZnDt59V4B8LQYjl+y5MXXG2Gd31+iKLhdvio1Vc/j+j79dUIzY1g/biJ/Nm5PxQuHOaAt5Pt7OEunLuSvdOkxhBCGZ5BEkTotmgPha1icUweGoA1N6O3ZFjdtHRizOozeEMDpvu8waNYk3m6SzNavz+K19ht6PjQpRggNRXleD7lMfipN3qVSZt8ZaHRf6K8m+a/vmL3WBO/J3tQ3juHXsFNUaOdBAzvNZ1WdzLE1v1F//GrqmT/8kncCrf29NxPi3yx7eQivgO2o3/TAY7CaHd8OoLqe+CFnIGLE/SORhviObMSKdduJG12LasZqbh76kSPlvVndqXzpHIiorrPDrz19Fp+Bxeu4v47vHs7Yl8qjIoQoYgwSbCksq+He059g3XVgMHPpz7IDPbh8+gTnU22ZtGEwDmbSaYrCoCbl3D5CV37FEc2/rNcEElypOx7uLlgrbnH+pzl8PNsUG+/+1Lbazoz+Q9hp/iLvTBxAnVsXSKj3Jd9566oHmcKhT/w53GsTIROa31uHK3sOlybgGtSH8SEerOn1wB2J6hTO7Qtl5VfZrWFNYDCVunvg7mKtCabMqDf6RxZEDmbMLAdGNb/Cmrk3GLXuC9qW1jlKRuXw+DwKqeMrhCjKiu4UKIUFjnWfx9HQ7RAlnALrGi/R94OdmseD28xxmxxBjK+CylXMMGYwv1zx4MTJODKsnalbryq2er9B1rScu59tCqOHM07mNfFZfRBvXdsU1tR4qS8f7NQ8dL2sRW3eWrmb3tEn+Ce+MbN/eZcK5qU00BJCiGKi6AZbQhQFJmVxrpLrn7bVadyy+uM9V1cw9Tjb8mSMTbVGNK+W7xcQQgjxDMkkKCGEEEKIQiTBlhBCCCFEIZJgSwghhBCiEJkkJyczdepUQ7ej2Dp8+DAxMTGcOXPG0E0pkaKiorh+/Tr/93//Z+imlEhJSUlYWFjI8S1ElpaWOguLi6ejUqVKbN68mYiICEM3pUSKjIzExcXF0M0o9kyMjY2pVk1m2ubXwYMHsxfOlGNYOK5evcqVK1fk+BaShIQE4uPj5fgWIu3xVavVee8o8uXSpUvY2NjIZ7iQnD9/PnthYVEwJtpRl4xq80+b0WrQoAEjRowwdFNKpNWrV6NSqeQzWkiio6MJCAiQ41uIPvvsM0M3ocRr3749AwYMMHQzSiRTU1NOnTpl6GYUezJnSwghhBCiEEmwJYQQQghRiCTYEkIIIYQoRBJsCSGEKLCsG+c5eTKam1mGbokQRY8EW0IUCWqyMtJJT08nOf4SySpDt0eIx6Xk8pZJvLcyioykfcz0/oD9SXL3pRC5GbQ2YubVCIIWhlB+5Ad0q2x8+6dZxIZ8wrxfLnH/AMmUaj0n4udREeOHX0qIYi3rv294/ZWPicxQULbNp4R924Myhm5UMZIRs5UvZnzO5uMJlGn4Gv83YyyeVUwN3axSIpmIJWGYT59Kk+ZZXDVbwa+xmbjXMzN0w4QoMgwTbKkSObUrmLWfjuLD8KosGDL93rb0SJZMWc4exyZUL3M7rFImcDT8JO37zZRAS5RAqRwLOoDnyv2sb14BM1n/8okoLwUzftxO6nm9z8yuB1k88n06HYKTB/2R8/2TyuRqRBALQ8oz8oNuVM7d4apuaj6n81l12hIHdTxZz/ni16c+1gprnh9QkxHew3Gd3oioGu8xzlUOvBC5GSbYMrKlnocXfqqNzAuPum9T+r+HcPz8CAf/53D3GqcyeiltX96PT1MZ64uiTXe2VkvFzWNBzF91GksHNfFZz+Hr14f61prI6tYFjpw5zRfzKuJf3Zdvgr+kv4ucrB5PJnFHU/BetoDmZbVRalsaqbYS0n8HUWkSbN1PReYtNaZmuoesqsRT7Apey6ejPiS86gJyj4Ehjb8+8aTr7rf5PdQXF3UUX3i8TI/43YQOd6VKvy/4NKwTwwb/xqvLtuJg0GsmQhQ9hp2zpVDw4CDewm0Io3IFWtr5ALFhgcS19uF5ibVEUaXN1u4IYpZPJwbP3sy/affPWUn76xM8uwZRbdR0Jk6azjD7L+jYYwlnbmk2mtVhaMCv/HM1lo2vHOG9t3/koszZekymVO0y4HagpaUmI+kWFT19kLHZHbe4+Ps3jO3SnNdW/KcJT3Uzsq2Hh5cfY9tbPbRNdWkTfrNP0+b9vrhor86auTJwbGP+mDie8Gtp/D1/NHu8dnFu33tc93+ND4+lF+pvJERxU/QnyCtjCQuMpZV3M2wM3RYh9LmTrR3bnodOVapLbPKbzek279M350yF68CxNP5jIuPDr3E3LDNzwnPSHDqlHifu1jNtveEpk4g+dYITJ/Q8Tp7l2q28Jl2rST21Ev9vG7D0u4E4l/Y5B6oUzoTNZ0ibhnSYFYnb1FA2D69FXjPZHq7jqCZ+93J2ptSmY4M7EawC20btcUkMY9ne8xzeepEarnaUbTKM+aNsOXwqqRB+ISGKryKf7FXGhhEY8yLTW9gauilC5E1HtlYdv5vlO1OovbTB3UnvCttGtHdJZOqyfdx4rRv2d/ZVZmDq2gLn0nb5K+UoC0b6sz9Fz3azOgwPXIF3dT2hguoGR7+fzeTpCwk7l8nqDmXZs2c2rWxL4QS4rGscXb+IWXPXEF3XB/8lESxraFeA+a5pnNtzEqVlS5xt743PTR1qUkGRzomINNqOeJ73v/4R937l2H/+f4waVO5p/CZClBhFPNjSXkJcSbT7NF4oa+i2iBJPm12JitG/7ILCAsdaNXB4whnsaef2cFJpSUtn23upZFMHalZQkH5iP1H79jJmTAzdx/bF5WYsPWe+jWPRzzk/XbZtWbD9j/w/38iOpt5z2eI1jcgV3rQdgZ/nYwAAIABJREFUOodx60awb4jz02tjkZfB2TUTGDplPWkd/Jmx8Tjtq1s+FPw/OSU3LyaCuQ0WuT+XxlaU0QwKEi+mULHnF/zgeZkL1xQMW9wZq9KeVRTiAUU72FLGEh4YzQuT3ZFYSxS6gmZX9FDevEgi5tjcf6bCKudMxa3nlrMtOJp4RQWqViojd9wWhKIMboMXMWtpKB8dv6j5QWkKtkyp2LwDndpEsOz3LWzZ8TwNvFpRucBZUiMsbMxBpUR135VcJVmagYmZtVn2IMLY2pHq1gV9LyFKpiIdbCnjwln5Xwsmvlj2KYzOhMhDQbMrehhZ2GhCLRXK+89UKHPOVJgZGVOmco3Sva5WQgg96vdja6Ke7RZNmPnHbvzqPkbkYGxHdSd7qtR3fKpNLPqMKFO7K+8HdGV03F5WzZuBh1sy7sMmMfGdztQuk990qTnOTavC91dJzLX4oTrtOjcywalRZUrbVW8hnpRhL1ZoR0qaP9Q6570qiQsL4FyzQbSyk1BLFF/mzk2pSgpX7z9TcT3nTPUUMg8lgH03Nl1KJTVVz+P6Pj2BlpqMyyeIjE27e6OBOuEAm+NfYUqv0pTVup+5U2t8F4Tz18ElvJISyMAmzeg1ZQ1Hr+Wnlo4JTu264KKO5niuOzcyLhwlVlGXHm0cJRsrRB4ME2xpTjTR+zfy1eLfSOMswUEb2BWZoAmvclHGERZwlqZvtcZeYi3xLGizK5WssLLS8yjXivn/PPltgiZO7ejioib6eBx3n51xgaOxCur2aIOjnKkKIJ1jH3WioXMVXnp7Nl8vX8Jni4/iGfgVr1YobRPfHmZs14je09YScXwj71Y8QEBotN6lH+5QKbOHwOQeA1u4+TKm2UU2hJ2//fwMojaHkvTyeN6sLaMFIfJimMuICkuquffEP1jz0LePUQVe//EI/Rwd5BKieDZuZ1cKRFe21sIN3zHN+CogjPMTGlDbVHOqitpMaNLL+L9ZWy7BFIglLRf9Q+ywSM6nmFPJtR4u5cykz3iAwsqFDqMX0uER+6jTojkQvobFv6VpPqDBBG1oQm/PtrjZa0YDpq4M/2EpkYPGMK3yWNpnhTFvb2dWBvlQtUhPRhGiaCi6XxOFBeWdnQzdCiEejzZbeyCcNdnZ2ozsbG2T3p60dbPHGFNch//A0shBjJlWmbHtswibt5fOK4PwkTNVwRlZ4eTWAuktbhDu5c6QXfrWuLKg4aRf+HmEq861thSW1XDv6U9wT91DYLMaA1i+qztxp04Shx+bvJywkuShKAo0/e/Znxcwa8kWIpPseK7HGKaO6phrCZ1HVPB4rO0FJz29EE9DXtlasxoMWL6L7nGnOBkHfpu8cJIzlXiq7OgcdIrYwnwLbWDboJkEtuKZU2XeQm1qpmN+YCbnvhvEmz870amdJ9a/rWTxOE+CI8P5e0UnHIzuVPDYzdu/h+LroibqCw9e7hHP7tDhaMt45rX9aZDeXohnxggrpwY0a95AAi0hhHgMty7+zjdju9D8tRX8p2vCYfJBvvurN2vXLWDK+Gl8HhzBz284cClwLjuvq/Ou4PG4FT4KSHp8IYQQQhQhKlLOhDF/SBsadphFpNtUQjcPp5aO698qpT2vjetOlTspLyMHWvV7HhNlGmlZ6nsVPDo+XMEjbNk+EvLYfuMp/UYSbAkhhBCiCMji2tG1TOvdnCYDA0l9ZQkRx7fw2RD9i/Mala1P8yq5Nyq5GROPacMeuDsY3a3g4aSvgsc/j94ek/F0fjOTlJQUZs6c+XRerRQ6evQotWvXNnQzSixzc3OSkpKYMGGCoZtSIiUmJmJhYSHHtxBZWlrqKO4snhZHR8fsfkIUDu2yN+XKFX6ty4yza5gwdArr0zrgP2Mjx9tXxzI/X5vMs/wUmMzA+b64mkJKHhU8bibceOT27OURn8LHy0TbCdjZ2RX8lUoptVpNenq6oZtRYmVkZJCcnCyf0UJ09epVOb6FSHt81bpXbhZPweXLl7P7CVE4tIsKX79+vdDfx7Riczp0akPEst/ZsmUHzzfwotUTr/icRexPs9jZJZDvO5bLzlTlVcHD3FKZR4WPgv1ed5hoo1YZ1eZfTEwMNjY2hm5GiVa5cmX5jBaS6OhoVq9eLce3EH355ZeGboIQRZ5Rmdp0fT+ArqPj2LtqHjM83Eh2H8akie/QuXaZx5jzpCbl+HLmnBzAiqnu2N7OiuVU8PhebwWPai6pj9z+tCp8yJwtIYQQQhQN5k609l1A+F8HWfJKCoEDm9Cs1xTWHL3Go4pNZfy7ltkbnfGf0uluVY7Mm9fIrPToCh5Vqj6bCh8SbAkhhBCiaDG2o1HvaayNOM7GdytyICCUaD21pjJj1jNu4p80bl+RC4cPcODAAX4PX8rUhX+RbplTwePihjDO337+nQoe47UVPCzy2P6Ufh1Z1FQIIYQQRZPCCpcOo1mop9aU6voO/Nr3YfEZWLxuTq4tjgzdcwZ7hSn2eVTweBYVPiTYEkIIIYRB3Qj3wn3ILvQWm2o4iV9+HpF9h2FuRuU8+DxKzeePevG8Kng8gwofEmwJUVyps8jIyEJNFsk3oFylx5lEKoQQRY9d5yBOFW6tqZwKHnprTeW1vaDvbjCZXI34jslTQ7iofGBTRgzbFk9n+qxPmOE/mve//I0rj5oZJ0Spk8V/37xOUzc33Bq2Zdz+FEM3qIjI4sKP7zJg3l/IgixCiKLCIJktVeIpdgWv5dNRHxJedQFDpufeeJUQ3w582jKUbZNdMVNeYdMbLeh8fQt/THV7GmuLCVH8pR4j6IAnK/evp3kFM2TJzByZ575j8Ftfc+wNb1SGbowQQtxmkMyWkW09PLz8GNve6uGNSQf4amMiDZo55dwFYFyBVq85ExWyn3jpPcWzkhHD1k/f5tU2LXmpyxDmbI1Fz40wBfSIDK/qJscCp+E35WNmT/Zjxo8nSbm97t6tC0c4c/oLOlS057m31/LfrYdeuPTJ+Idv50bi5vqU7tUWQoinxKBTPHSWsDCxw8nyEmvnbSJGe3ZTJ3AkLBrn9s/jIBNSxLOgvETw+HFssX6N92dOpKf1L0zo9AqfnXq6EY02w7sjaBY+nQYze/O/pN23gHEaf33iSdegaoyaPpFJ04dh/0VHeiw5k70WjFmdoQT8+g9XYzfyypH3ePvHi6U8k6M5Xl9/xvW3/o+X7KSjEEIULUVvgry1Ox8u7k9o/zdo0fM005r9wy8O8wn9oCkWhm6bKBUy446S4r2MBc3LZl+ea9tIxdaQ/uyISsO/3sOrrigTL5FkWQk7HRXplcmXuWlakXLmDw8s7mR4VRvnER51/zbVpU34zT5Nm419ccl+XVcGjm3MxEHjCe+3gdcccl7PzMmTSXM60WWrdkG+ysX3O6JMIjoqhmR9EaPCAsdaNXAw03XBVE3yoc/5IutdFrawJaww2ymEEPlQ9IItTZOc+63k98RrNB76ISN2uDMppB3Viu1ZRBQ3plW7MKDqvX+rM5K4VdET36ZldOydwuGZHRhwYQLbV3pRI1cspozfgX/HIURPjWDt6xX1ppEfzvCqid+9nJ0ptVna4M57KrBt1B6XxKks23eD17rZ391XmWGKawvnp7b4nkGkHGXBSH/0zvM3q8PwwBV4V384olXf3Mdny6x57/MmWCkSCredQgiRD0Uw2FKTdiqQGZsa8m14dzYPH8nsji25GrKfJa86IrMxxONRkhQdRYz+VAkWjrWo4fDoyeXq1FOs9P+WBkvXM9BZ16fPmhdmhfCBT3s8BinYGfAGLmbaQGsnEzx9ONw/mOCe+gMt3dI4t+ckSsuWONvee6apQ00qKNI5sT+KfXvHMCamO2P7unAzticz33Ys3ss+2LZlwfY/nvx5quvsnBtI5fe/oIEMyIQQRVTRC7ZSDzHl1alkfHmSvp3s6HOkOQ06tWHqkKm8eXYZL1kbuoGieEjh6IKR+OtPlVBneCArvKuj4+qfhoobR79n9uTpLAw7R+bqDpTds4fZrWwfDs7MauC9cie8qQm43lKwdV5llnXz5lA/TaA1vhk2T3yroJKbFxPB3AaL3BGUsRVlNIFc4sVbPLd8G8HR8SgqVKVSmdI7BMk88w3+AQewiejKjzk/IS4ik6snRvHqhaZ4f/EVb9Uq1jk/IUQJUOSCrazL+9geY0e/6lbZJzVF2ZaMXfg2X7b+gz/jlZpgq/SeWMSTsKXtgu3kI1dymxF2Tb2Zu8WLaZEr8G47lDnj1jFizxB0JrjMtQHXDlRvtKZBrXRaTt9GaL4CrZz3trAx18R7SlT3TZpXkqXSxHbWZhgZl6FyDV2XNYuphBB61O/H1kQ92y2aMPOP3fjVvT9wMnbswofzKnH97p2cqRw6/yvnND8f+MYLNC0n/YUQwvAMGmyplNpLPGpyn09MHNxoaBPH/pOJqOuVz8kiqNWYVnwONwfpOMWzpqCM22AWzVpK6EfHuXgLnC1176lMPs+Jcyqq1bTk4okzJGRqgq18JVXMcW5aFb6/SmKuxXzVade5kQlOjSoX7/lZuth3Y9Ol1Cd+mlHZhnQd2DDXT25SNmA0a2q9ogm2WqFjcRkhhHjmDDLNQ50Wzf6NX7H4tzQ4G0zQhl1EJtwemtq2Y/7KwVyb7M3klWFs3/wl708/y4BvP6F1CRrIi8KWQEiPSlhZWel5lKPV/H94vMUcjLGr7oR9lfo46olylNd2McnTiwN9Qjl8eC/TMyfhMWQt5/O1WoQJTu264KKO5njcvRfIuHCUWEVderSRuYtCCFGcGCSzpbCshntPf4I1j4eZUKnrAvZ2iOffE2e4Rmdm/jyccjpv+RbPTLGrw2dPt02XePJcifbuw8ucPJNFjQZVsNR+7NQJHNgczytTeum8hHgn0NrfezMh/s2w1TzHK2A76jc98BisZse3A6j+iFSUrgyvhZsvY5p9RUDYeSY0qI0pGURtDiXpZX/erF3i8lpPUVle25HBFUM3Q4inLfM65/5NwKZGTcrrWEpGFG1F9nypMC+Pa1N3WjatJYGWwZWuOnzpxz6iU0Nnqrz0NrO/Xs6SzxZz1DOQr16toOMLk8KhT/w53GsTIROaZwda2bLncG1nmvJTxodc0bng6CMzvKauDP9hKS2CxzBt9Xa2BU7Cb29nVq7yoWqRm2kphChMmefXMGb0Ws4nn2bZoLdYdjrD0E0ST0i6bZG3UlaHz7LlIv6JHUbk+RTMK7lSz6Uc+uN9a1rO3c82hdHDx8W8Jj6rD+Ktaxt5ZXi1NzkOYPmu7sSdOkkcfmzycsKqyA6PhBCFI1UzoPuQE+33srB5eZp4r6D5+HB6beyOQ0nvjEsQCbZKmcyrEQQtDKH8yA/oVjnXNTFtHb6g+aw6bYmDOp6s53zx61Mfa8W9OnzzKvpT3fcbgr/sn72WVMllhJWTGy2cHnN3PcFUntseqylWODVoxuM2RQhRlGlroQaxMKQ8Iz/oRu4uWH8ffIvLp6+S2T5nNwsnV0xO7OF8hibYkrXlig0ZJ5cWqkRO7Qhilk8nBs/ezL/3FeKTOnxCCFFQqsxbPFhP/u62fNdCtaZxLzeivv6Rf1JSiDl+mkQTG8zl7F2syH9XaWFkSz0PL/zGtn/odvi7dfjev12HzyynDt8fE8cTfu1ej3CnDl/q8bjHvItPCCFKvlsXf+ebsV1o/toK/svUvc+dWqhj2z+8IMmj+2ATar6zmdB3brHhy1Xs/juGsh6d7isNJoo+kxRNpDx37lxDt6PYOn78OLVr1zZ0Mx6fQvHAZa2iXYfPzMyM5ORkpk+f/ozesXS5efMmFhYWcnwLkaWlpY76l+JpqVChQnY/8eypSDnzC19/PJul+214dexUQj9pRWXdJSnuym8t1CZ936PR5c28/VodPtjY4pmtIaftH+zt7fPeUTySifY/3shIElz5lZGRQVpa2jN5L2VSNFExyXov4SksHKlVw+ERk7l1Kdp1+G7dukViYqJ8RguJ9vt/9epVOb6F6MqVK6jV6rx3FPmi/fxq+4lnJ4trR9ezaNZc1kTXxcd/CRHLGmKX78Xv8uqDY8joouC/nav59qcYOgauoK/Ts1tpLz09nYQEKfBeUCbaBR5lVJt/2o7U1tb2mbxXytEFjPTfj95qf3WGE7jCm+p5jKzuV/Tr8Dk5OclntJBER0ezYcMGOb6FaMWKFYZugnhKMs6uYcLQKaxP64D/jI0cb189Zy2+AsmrD04k9cYVFI3e5GNPa5n7U0zJ3YjFiG3bBWzPf7E/PUphHT4hhMgH04rN6dCpDRHLfmfLlh0838CLVpULegkz7z7Yonwd6hTwXYRhSZBc6t2uw5dSiurwCSFEPhiVqU3X9wP4/e+tTKr/FzM83Gg9eD5bovRP78ib9MGlgQRbxUhCSA8q6a31Z0W5VvP554mnLkgdPiGEeCLmTrT2XUD4XwdZ8koKgQOb0KzXFNYcvUZW3s9+gPTBpYEEW8WIfbdNXEpNJVXP4/o+P+rmNQTSpqo1f+Ser5tTh+8iG8LOk3PX8p06fOOlDp8QQuhjbEej3tNYG3Gcje9W5EBAKNF6ln64Q38tVOmDSzKZs1VaqNOIPhDOmsW/kab5IgcHbaBJb0/autljfLsOX+SgMUyrPJb2WWHM09bhC5I6fMWTmlvXznLqii316leQSxBCFDaFFS4dRrOwg/5dtLVQD4SvyamFmqGthdqE3p5tcbM3vlsLVfrgksuA/436yxaoU88QsiSQo+nGpFy8SeUefozoUEVOGgWhsKSae0/8gzUPHZulDl/JoLz+B19ODeBaK1+G965ZYr8zGTFb+WLG52w+nkCZhq/xfzPG4lnl4dtwM69E8MOyH/hTXYMmL3amh4drdgkqIfLjRrgX7kN2kaRnu0XDSfzy8whcddwRLrVQSzeDBFvasgW7gtfy6agPCa+6gCG57zq/9S9Le3qwvu8ewodUw+jqFoY0ewGvTw+ypq+TXLsuTFKHr3hLPcbsbsO4+tGvLHzZrsTOEVBeCmb8uJ3U83qfmV0Psnjk+3Q6BCcP+lPvTnSpTiNq9Wj6TDpDt2WrmNXp2S3EK0ouu85BnIotxDeQPrjEMkiwdadsgWrjPMKj7t+WtPdDJu9w4rMA55zGVfBg7JsWNB4zkzFdl/CStSFaLEouNennQvlsxmJCT6RS/oUBTPxwKO7l9If1qht/8PnM7zmTkfN8JVUYMGMCbcs9vfAmI/ZXVizaQ7NpU3C/b9UNJQkHA/j0hxhs7NKJt2jHmNGdqWqm4uJPfsy/1IJJEZ8y+YAbfYf1o6ldSQu5Mok7moL3sgU0L6tNUbWlkWorIf13EJV2J9jKJDpoIC/6nmXkvt+Z3qxMwYqBCyFEARm0J364bEEG53/9g+tmlahc5k7TzKnmXhezSz+z4VT6s26iKOGUcT8xbvKvVOwzkZljXyZ11XA8fH7ist77uDM5t2oq3/x6jD///FPz+JvYcu1oYv+UvkrKG0RuC2D6gK6MnLediw/c2pR6dCYdeoXS2G8qEyZPoW/8ONoN/ZkrqlRO/vy35vfwZdi4CQww/ZJu/YKI1VcVt9gypWqXAbcDLS01GUm3qOjpQ9PbQanywhp8h27CYthS3pdASwhRBBSxqXcKjIw1J620y1xK0ZztbHJOYCY2FbDmKlFXtLfFWhi2iaIEyeTC0SyGLJ1LUxvtKfklal4NxvWT34nO6IOjpY6npBzhm72vsG7f2HuXrPRQJl4iybISdjrmbyiTL3PTtCLlzB8IBYztcOs4CP+k75iz58EnxbHBbx4XPH/h1exJjmV4fqgvZeqOYv6YCDpmmVDpuVrYGJehkfe71Jj/EydSfahi8/hH5JlRJhEdFUOy/tpTONaqgcMja0+pST21Ev9vG7B0/UCcs5ORmZwJmsO29LJ4mm1k1KtjOXzBhHrdxjBr0uu4Fny5byGEeGJFLNgyo3qHl3Gc/g3LN0cz8B2X7AZmpiRrulALbC1L2iURYVimVO/aj+p3/60i7aaamt16UEdnTK/iypaP+HL972yI+4Muvd9ihG9nalvr+lymcHhmBwZcmMD2lV7UyBWYKeN34N9xCNFTI1j7ekWd6WVdhYtV8b/yzW9p1Hm77t0itCaOLWhh9x8/rI3Gt1MdEo/GkDGgAuYKI8wr1KbCE5VueoZSjrJgpD/79deeYnjgCrz11Z5S3eDo97OZPH0hYecyWd2hLHv2zKaVTQKHQ0+AdUe6+0xhWCNLrv02k1c8etMqOpxTAZ0oJ/GWEOIZK2LBlqaPbDmTwLERdH/3JTofGkgz2yxuRu4hGVfa1NSVahBCSeL5KC6k6EuTmFC2uitVdAZFd6hIPPIlk3/rwfcb/kdZnSfkLNLM/se7vmb8FraRRe+tZ9HCQazfu5xeVR78KlnzwqwQPvBpj8cgBTsD3sDFTBto7WSCpw+H+wcT3FN3oKVP+rk9/KO0pX1ly3uXxkwdqFkezu+LouyUTxk4dBFf/TKChqf20nzGZBoW1USwbVsWFKT2lJEdTb3nssVrGpErvGk7dA7j1o1gn086cdqauY196NXQJvv4Vmg7nkW+S3npm/ns+syTXg4SbQkhnq0iF2xhXAHP+Ye45neKE7FKKrqWZXfvJXzTaiivPMNK56IYUSdx6LMRTI5I1b1dUQ7Pz9fxYXMr3duV19j/7YdM/HAxu2PVbOtZnsM/j6SO+YM7mlG9+zg+6a75qyqJyDXj6O29DJ93utA6uC+OD0ZOZjXwXrkT3tQEXG8p2DqvMsu6eXOonybQGt8Mmyc852svSyZijo15rjcyskBbVo3Ey6RY9mf86uVcj71EVpsv8CwN940ryuA2eBGzloby0fGLmv7DmfLauVvKrJw6c9nH2Io67WrD13GcS8gCh6Ka7hNClFRFL9jKZoSVUwOaO6lJ2PEuk36rjt++N6hWRFsrDExhR/tFO8h3nsTYAfe3P2fX4A/ZP7cb7SZNY+Yfg1jV7hHFt41scHtjMaEJx6jjv4Y/U/riqWtulLk24NqB6o3WNKiVTsvp2wjNR6CV/ZbmZTShliq7OO09KrIXpDa3Jnt6k8KMcs7VnvzFn7WEEHrU78fWRD3bLZpo/g9245dnSQSy57lVd7KnSn1HzUGyp0k7Fwg6RmwGVM5OhufMBVUYO1LdTjoRIcSzZ9Chr66yBfeoSTq6kH4DQnFfFsqHLWTNB1HIjO1x/78vGF09mdNn9UUBuZlStWMP6hinkPGIKrTK5POcOKeiWk1LLp44Q0Ie5Tz0MXduQhWSuZqU6xZFZRJXksHWtSZli1Pi174bmy7pLz2Ven2fnkBLTcblE0TGpt3tN9QJB9gc/wpTejmjvYGmweARPB+/kaA/k2/vkcaZvecp9+q7tJUJW0IIAzBIsKUtW7B/41c5ZQvOassW7CIy4c496lkkntvDysn9eW38CV7bfJQf3nLloSs6Qtyhjuenbo56C3RblXFh0O7kvF9Hy7Q8NR0rUrP6493Cp8pIRlHNnRp65kYpr+1ikqcXB/qEcvjwXqZnTsJjyFrOP3HBcDCp0o5OVTM5d/LqvWK3aTEcv2TJi683onQMR9I59lEnGjpX4aW3Z/P18iV8tvgonoFf8WqFnO7MrM5oNgR0Yt87g5j1wy+EfjOFmWe9WLu858OXeoUQ4hkwSE79UWUL1KnRHDtjRPNRAXhXsiyxq2CLp0hRntdDLqNnxtYjqEm/eJJziprUq2SRPb1HeWk3W619mfqiTfb25L++Y/ZaE7wne1PfOIZfw05RoZ0HDeyMNZuTObbmN+qPX009HaOBO4HW/t6bCfFvhq3mDbwCtqN+0wOPwWp2fDuA6nqukuVkfY24v1ptQ3xHNmLFuu3Eja5FNWM1Nw/9yJHy3qzuVL6UrCdlSctF/xA7LJLzKeZUcq2HSzmzB353M1z6L+NAj8ucPnGeVNtJbBjswCNXkRBCiEJU5CYwKKxq0rZjTUM3Q5QKaRz5sAMvLc3if8PHMaCJtXaeOaPWTKFp9lz6W5z/aQ4fzzbFxrs/ta22M6P/EHaav8g7EwdQ59YFEup9yXfeVXV8kVI49Ik/h3ttImRC8+xAK1v2HC5NwDWoD+NDPFjT64E7EtUpnNsXysqvjqC9o3FNYDCVunvg7mKtCSjMqDf6RxZEDmbMLAdGNb/Cmrk3GLXuC9ralqJIQlvSxK1FniVNFBaO1H3e8Zk0SQghHqXIBVtCPDtWtPoqigsjI4lOs6JKnXpUK5v7K2GO2+QIYnwVVK5ihjGD+eWKBydOxpFh7UzdelWx1fsNsqbl3P1sUxg9nHEyr4nP6oN469qmsKbGS335YKfmoetlLWrz1srd9I4+wT/xjZn9y7tUeHBhVCGEEEWKBFuidDOypkrDF6iib7tJWZxzbTSxrU7jltX17X0/XcHU42zLkzE21RrRvBjcdCiEEMLAdyMKIYQQQpR0EmwJIYQQQhQiE+2aNgsXLjR0O4qtyMhIXF1dDd2MEsvMzIyUlBRmz55t6KaUSDdu3MDCwkKObyGytLTUWetSPB3ly5fP7idE4dB+fu3s7AzdjGLPRK1Wk5z8mGsQiYckJSWRnp5u6GaUWLdu3SIhIUE+o4VEG8heuXJFjm8h0h5fbT8rCkd8fHx2PyEKR1paWvagTBSMibW1tYxqC+DmzZvY2toauhklmrOzs3xGC0l0dDQhISFyfAvRqlWrDN0EIYSByZwtIYQQQohCJMGWEEIIIUQhkmBLCCGEEKIQSbAlhBBCCFGIJNgSolhTc+vavxw/eRW5H0sIIYomA5XrUZN29mcWzFrClsgk7J7rwZipo+jofG+tFNXNYwTNX8VpSwfU8Vk85+tHn/rWBShxIkTJorz+B19ODeBaK1+G965J6VlpKIvYkE+Y98slzd9yM6Vaz4n4eVTE+PZPMq9GELQwhPIjP6BbZeOHX0oIIZ4Bg2S2Ms99x6A3v+NqjXYtXVlsAAAIu0lEQVR4vlCWk8vH4dliGL9cU+XskPYXn3h2JajaKKZPnMT0YfZ80bEHS87I2F2IbKnHmN1tGGd6z2H6Gy1wLE3FqNMjWTJlOXtOxxAXF5fziIkkdPka/jGzygm0VImc2hHELJ9ODJ69mX/TZJ0rIYThGCCzlczB7/6i99p19Kmi7RbHMaKzD3W7BjJ351w8+5Tj8iY/Zp9uw8a+LpqxqobrQMY2nsig8eH02/AaDqXovCIMICuWkE/m8cul+/MmmFaj50Q/PCo+zQxJJlcjglgYUp6RH3TjvuSL6ibHguaz6rQlDup4sp7zxa9PfawVKi7+5Mf8Sy2YFPEpkw+40XdYP5ralY5ZAen/HsLx8yMc/J/D3dGiMnopbV/ej0/TMjk/MLKlnocXfqqNzAuPMlhbhRBC69n3ziol9q+No3uVO2cVIxxa9eN5EyVpaVmoNSeV3ct3klK7Iw1u95sobGnU3oXEsGXsk4VsRSFLj1zClOV7OB0TdzdzEhMZyvI1/2Bm9fQCLVXiKXYEzcKn02Bmb/6X+5Mvafz1iSddg6oxavpEJk0fhv0XHemx5Ay3SOXkz39TsY8vw8ZNYIDpl3TrF0Ss8qk1rUizcBvCqFyBlibUIjYskLjWPjxf5oGdFQqZeiCEMLhnn9kyKkv95mXv+5HyZgzxpg3p767pQNOOsOekEsuWztje7U1NcahZAUX6CfbHZNDN3vyZN1uUFun8e8iRz48c5H8Od/MmRC9ty8v7fWj64MlcuzXxEkmWlbAz1bEt+TI3TStSTsdlPiPbenh4+aHaOI8Hky+qS5vwm32aNhv74pKT3mXg2MZMHDSe8H4BWGWZUOm5WtgYl6GR97vUmP8TJ1J9qGJT0N//2VEmRRMVk4xKz3aFhSO1ajhglle0pIwlLDCWVh82oxj9+kKIUsRAE+Rzy+TsT4EkD5yPr6vmrJJyk4uJYG5jcV/azdiqDGYkarZpL+1IsCUKiwVuQ0bd/6Psk3kcrT96nodjrRQOz+zAgAsT2L7Sixq5Zqkr43fg33EI0VMjWPt6Rb1p5IeLFKuJ372cnSm1WXovvYtto/a4JE5l2b5bLOlUh8SjMWQMqIC5wgjzCrWpoCPYK8pSji5gpP9+zRHUzazOcAJXeFM9j99LGRtGYMyLTG8hZbOEEEWTwYOtrNifmLWzC4Hfd6Sc9mxkZIGNufZqo4r7rqooszQjYDOszUrHvBRRUEqSoqOISdabN8HCsRY1HMzyvMyUfTKPbcWHzXTlTax5YVYIH/i0x2OQgp0Bb+Bipg20djLB04fD/YMJ7qk/0NItjXN7TqK0bInzvfQupg41qaBI58T+OCpM/JSBby/iq19G0PDUXprPmExDiyd6E4OzbbuA7X8U9FW0lxBXEu0+jRfK5r23EEIYgkGDLXXKcZbPOcmAFVNxt719yjN3pmlV+P5qYq7butWkXb9BJk40qlx6bnAXBZHC0QUj8d+vN29CneGBrPCuzqMTJznzgWJenI7exIlZDbxX7oQ3NQHXWwq2zqvMsm7eHOqnCbTGN8PmiScNKbmZk97F4v70LmU0H/9EzTZlmdaMX72c67GXyGrzBZ5WpXQQoowlPDCaFya7I7GWEKKoMlywlfEva2dvxNl/Cp0cb086zrzJtaxKtOvignrjceJudccuO7bK4MLRWBR1h9LGUdbKEY/DlrYLtlPwxEksYSujcZ/2wqNP5ubagGsHqjda06BWOi2nbyM0X4GWlhEWOeldVPend8lSaWI7a7OcTJnCjHLO1fLzBkVCQkgP6vfbSqKe7RZNZvLHbj/qPmJ8pYwLZ+V/LZj4YlmZCC+EKLIMMxzOjGH9uIn82bg9FS8c5sCBAxz4PZylUxfyV7olbr5jaHZxA2HnM3P2z4hic2gSL49/k9qS2BLPkDI2nMDoFxjknnfeRJl8nhPnVFSracnFE2dIyMzvu5rjrE3vplwlMdfqE+q069zQvKZTo8olYgFT+26buJSaSqqex/V9jw60tMFnXFgA55oNopWdnlBLG7Bq/lDLMltCCAMywNIP19nh154+i9cxp39b3N3dcx6tuzA9wYPm9gpMXYfzw9IWBI+Zxurt2wic5MfezitZ5VPV8JPMRDGRQEiPSlhZWel5lKPV/H/yKHGjOZmHr+S/Fm/xYtlH502U13YxydOLA31COXx4L9MzJ+ExZC3n87UOrwlO7brgoo7meNy9F8i4cJRYRV16tHFE8rto01qEBZyl6VutsX/oHoM0ovdv5KvFv5HGWYKDNrArMoFSsjqGEKKIMcDSD+Xw+DwK9eeP2smMGgOWs6t7HKdOxoHfJrycrKSQo3gC9nTbdInUgrxE9sn8HM38W6EvcZK92+1Aa3/vzYT4N0M7/dArYDvqNz3wGKxmx7cDqP6IDI32ZhDtvMTcyRcLN1/GNPuKgLDzTGhQG1MyiNocStLL/rwp6d0cRhV4/ccj9HN0ePgSosKSau498Q/WPAzRNiGEyKVIxy9GVk40aNacBhJoCQNQxoURcLYpb7W2f8R8oBQOfeLP4V6bCJnQnDv3eeTM4drONOWnjA+5onMtKXVaNPs3fsXi39LgbDBBG3YRmXA792LqyvAfltIieAzTVm9nW+Ak/PZ2ZuUqH6pKejeHwoLyzk6ULWZLXgghSh/ptoXQw6jC6/x4pB+Oj6wPZU3LufvZpjB6OCAzr4nP6oN469qGNvlSDfee/gT31J17MasxgOW7uhN36iRx+LHJy4nSetOhEEIUZxJsCaGHwqI8zk6Ps6PuYCrPbY/DyAqnBs14nGYIIYQommScLIQQQghRiCTYEkIIIYQoRHIZsYBcXFxwdHQ0dDNKLAcHB1xdXQ3djBLL3NycJk2aGLoZJZr2+GqPsygc2v5B20+IwqE9v6Wnpxu6GcWedjqJLPcnhBBCCFEI1Gq1XEYUQgghhChMEmwJIYQQQhQiE7UUDRNCCCGEKDSS2RJCCCGEKET/DxYCIbjj6woNAAAAAElFTkSuQmCC" alt="" />
题解:
见http://blog.csdn.net/doyouseeman/article/details/53396063,表示这个思路很难想得到啊···
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=;
const long long INF=;
long long R()
{
long long i=,f=;
char c;
for(c=getchar();(c>''||c<'')&&c!='-';c=getchar());
if(c=='-')
{
c=getchar();
i=-;
}
for(;c>=''&&c<='';c=getchar())
f=(f<<)+(f<<)+c-'';
return f*i;
}
long long que[][N];
int head[],tail[];
int n,m,q,u,v,t;
bool cmp(long long a,long long b)
{
return a>b;
}
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
n=R(),m=R(),q=R(),u=R(),v=R(),t=R();
for(int i=;i<=n+m;i++)
que[][i]=que[][i]=que[][i]=-INF;
for(int i=;i<=n;i++)
que[][i]=R();
sort(que[]+,que[]+n+,cmp);
head[]=head[]=head[]=;
tail[]=n,tail[]=tail[]=;
for(int i=;i<=m;i++)
{
long long maxx=-INF;
int to=;
for(int j=;j<=;j++)
{
if(que[j][head[j]]>maxx)
{
maxx=que[j][head[j]];
to=j;
}
}
maxx+=(long long)(i-)*q;
head[to]++;
if(!(i%t))
cout<<maxx<<" ";
long long temp1=maxx*u/v;
long long temp2=maxx-temp1;
que[][++tail[]]=temp1-i*q;
que[][++tail[]]=temp2-i*q;
}
cout<<endl;
for(int i=;i<=n+m;i++)
{
long long maxx=-INF;
int to=;
for(int j=;j<=;j++)
{
if(que[j][head[j]]>maxx)
{
maxx=que[j][head[j]];
to=j;
}
}
maxx+=(long long)m*q;
head[to]++;
if(!(i%t)) cout<<maxx<<" ";
}
return ;
}
刷题总结——蚯蚓(NOIP2016DAY2T2)的更多相关文章
- LeetCode刷题系列
LeetCode 我们工作面试和提高自身数据结构和算法能力的时候往往需要刷刷题,我选择LeetCode是通过一个留学论坛了解的.专业,覆盖语种全面. 提前说说刷题的心得: 尽量手写代码,少使用IDE的 ...
- ife任务刷题总结(一)-css reset与清除浮动
本文同时发布于本人的个人网站www.yaoxiaowen.com 百度创办的前端技术学院,是一个面向大学生的前端技术学习平台.虽然只有大学生才有资格报名,提交代码进行比赛排名.但是这并不妨碍我们这些初 ...
- 刷题ING...
我用codeVS刷题.. 努力准备!!
- XidianOJ 1020 ACMer去刷题吧
题目描述 刷题是每个ACMer必由之路,已知某oj上有n个题目,第i个题目小X能做对的概率为Pi(0<=Pi<=1,1<=i<=n) 求小X至少做对k道题的概率 输入 第一行输 ...
- 【BZOJ-4590】自动刷题机 二分 + 判定
4590: [Shoi2015]自动刷题机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 156 Solved: 63[Submit][Status ...
- NOI题库分治算法刷题记录
今天晚自习机房刷题,有一道题最终WA掉两组,极其不爽,晚上回家补完作业欣然搞定它,特意来写篇博文来记录下 (最想吐槽的是这个叫做分治的分类,里面的题目真的需要分治吗...) 先来说下分治法 分治法的设 ...
- NOI题库刷题日志 (贪心篇题解)
这段时间在NOI题库上刷了刷题,来写点心得和题解 一.寻找平面上的极大点 2704:寻找平面上的极大点 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个平面上,如果有两个点( ...
- 用js刷题的一些坑
leecode可以用js刷题了,我大js越来越被认可了是吧.但是刷题中会因为忽略js的一些特性掉入坑里.我这里总结一下我掉过的坑. 坑1:js中数组对象是引用对象 js中除了object还有数组对象也 ...
- BZOJ4590 自动刷题机
Description 曾经发明了信号增幅仪的发明家SHTSC又公开了他的新发明:自动刷题机--一种可以自动AC题目的神秘装置.自动 刷题机刷题的方式非常简单:首先会瞬间得出题目的正确做法,然后开始写 ...
随机推荐
- CSS-学习笔记五
1. 权重: 内联:A ID:B Class:C 标签:D 继承:0 2. 文字阴影text-shadow 3. 文字缩进text-index 4. 文本换行 5. 文本溢出 6. 圆角 ...
- DS博客作业08--课程总结
DS博客作业08--课程总结 1.当初你是如何做出选择计算机专业的决定的? 1.1 经过一年学习,你的看法改变了么,为什么? 1.2 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 1. ...
- 多进程Queue
进程间通讯 不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以用以下方法: Queues 使用方法跟threading里的queue差不多 from multiprocessing impo ...
- Java调用存储过程出现Bug,sql语法错误
因为SQL Server运行没有正常,检查了传入参数的值,发现问题,然后传入默认参数,解决了问题.
- java项目指向maven进行构建方式
1.在需要运行的机器中环境变量中配置maven 运行setting 4 配置环境变量 2.运行项目进行重新构建:alt+F5
- Delphi 中内存映射对于大文件的使用
这篇文章主要介绍了Delphi 中内存映射对于大文件的使用的相关资料,希望通过本文能帮助到大家,需要的朋友可以参考下 Delphi 中内存映射对于大文件的使用 平时很少使用大文件的内存映射,碰巧遇到了 ...
- Dubbo中的监控和管理
一.Dubbo中的监控 1.原理 原理:服务消费者和提供者,在内存中累计调用次数和调用时间,定时每分钟发送一次统计数据到监控中心. 2.搭建监控服务 3.修改配置文件 修改注册中心的地址: 注意:这个 ...
- TCP/IP各种数据包结构体
下面这些TCP/IP数据包是我在进行Socket及Wipcap网络编程过程中曾经用到过的数据包结构体, 这些东西平时看起来不起眼,真正用到的时候就会觉得非常有用...... 以太帧头格式结构体,共14 ...
- 关于HTML设置访问密码。
如果你要设置访问密码恐怕要使用sublime_text了 废话不多,开始!!! 先把这些东西加上: <html> <script> 然后开始写代码: 先辨别密码登录正确的情况: ...
- 【动态规划】loj#2485. 「CEOI2017」Chase
有意思的可做dp题:细节有点多,值得多想想 题目描述 在逃亡者的面前有一个迷宫,这个迷宫由 nnn 个房间和 n−1n-1n−1 条双向走廊构成,每条走廊会链接不同的两个房间,所有的房间都可以通过走廊 ...