Description

Input

* 第一行: 两个空格分开的数, N和M

* 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i

Output

* 第1..N-1行: 第i行包含一个数:从牛棚_1到牛棚_i+1并且避免从牛棚1到牛棚i+1最短路经上最后一条牛路的最少的时间.如果这样的路经不存在,输出-1.

Sample Input

4 5
1 2 2
1 3 2
3 4 4
3 2 1
2 4 3

输入解释:

跟题中例子相同

Sample Output

3
3
6


3694只是给出最短路树而已,这里考虑1576怎么做。

首先求出最短路树。

设第i个点到根的路径长度为dis[i]。

考虑每条非树边<u,v>,有哪些牛牛可以经过这条边呢?

设l=lca(u,v),只有u到l和l到v路径上的点对应的牛才能享受到这条边。

考虑在子树内部的情况:最后一条边被割断因此走这条边不会减少到该点的距离。

考虑在外面的情况:由于到祖先的边被割断根本走不到u或v。

所以就变成了一个路径赋值取min,单点查询的问题。

树剖+线段树即可。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <ext/pb_ds/priority_queue.hpp>
using namespace std;
using namespace __gnu_pbds;
#define N 200050
#define M 200050
#define inf 0x3f3f3f3f
#define ls p<<1
#define rs p<<1|1
vector<int>v[N];
vector<int>w[N];
int head[N],to[M<<1],nxt[M<<1],val[M<<1],cnt=1,n,m,xx[M],yy[M],zz[M],vis[M],use[M],t[N<<2],cov[N<<2],dis[N];
int dep[N],fa[N],top[N],son[N],siz[N],idx[N],turn[M<<1],ww[M<<1];
__gnu_pbds::priority_queue<pair<int,int> >q;
struct shulianpoufen {
int head[N],to[N<<1],nxt[N<<1],cnt; }T;
inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
void dij() {
memset(dis,0x3f,sizeof(dis));
dis[1]=0; q.push(make_pair(0,1));
while(!q.empty()) {
int x=q.top().second,i; q.pop();
if(vis[x]) continue;
vis[x]=1;
for(i=head[x];i;i=nxt[i]) {
if(dis[to[i]]+val[i]==dis[x]) {
// printf("%d %d\n",x,to[i]);
v[x].push_back(to[i]); w[x].push_back(val[i]);
v[to[i]].push_back(x); w[to[i]].push_back(val[i]);
use[i>>1]=1;
}
}
for(i=head[x];i;i=nxt[i]) {
if(dis[to[i]]>dis[x]+val[i]) {
dis[to[i]]=dis[x]+val[i];
q.push(make_pair(-dis[to[i]],to[i]));
}
}
}
}
void dfs1(int x,int y) {
fa[x]=y; dep[x]=dep[y]+1; siz[x]=1;
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dis[to[i]]=dis[x]+val[i];
dfs1(to[i],x);
siz[x]+=siz[to[i]]; if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
}
}
}
void dfs2(int x,int t) {
int i; top[x]=t; idx[x]=++idx[0];
if(son[x]) dfs2(son[x],t);
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=fa[x]&&to[i]!=son[x]) dfs2(to[i],to[i]);
}
}
void pushdown(int p) {
if(cov[p]!=inf) {
int d=cov[p];
t[ls]=min(t[ls],d); t[rs]=min(t[rs],d);
cov[ls]=min(cov[ls],d); cov[rs]=min(cov[rs],d);
cov[p]=inf;
}
}
void update(int l,int r,int x,int y,int v,int p) {
if(x<=l&&y>=r) {
t[p]=min(t[p],v); cov[p]=min(cov[p],v); return ;
}
pushdown(p);
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,y,v,ls);
if(y>mid) update(mid+1,r,x,y,v,rs);
t[p]=min(t[ls],t[rs]);
}
int query(int l,int r,int x,int p) {
if(l==r) return t[p];
pushdown(p);
int mid=(l+r)>>1;
if(x<=mid) return query(l,mid,x,ls);
else return query(mid+1,r,x,rs);
}
void solve() {
dfs1(1,1); dfs2(1,0);
memset(t,0x3f,sizeof(t));
memset(cov,0x3f,sizeof(cov));
int i;
for(i=1;i<=m;i++) {
if(!use[i]) {
int x=xx[i],y=yy[i],z=zz[i]+dis[x]+dis[y];
while(top[x]!=top[y]) {
if(dep[top[x]]>dep[top[y]]) swap(x,y);
update(1,n,idx[top[y]],idx[y],z,1);
y=fa[top[y]];
}
if(dep[x]<dep[y]) swap(x,y);
if(x!=y) update(1,n,idx[y]+1,idx[x],z,1);
}
}
for(i=2;i<=n;i++) {
int tmp=query(1,n,idx[i],1);
if(tmp==inf) puts("-1");
else {
printf("%d\n",tmp-dis[i]);
}
}
}
int main() {
scanf("%d%d",&n,&m);
int i,j;
for(i=1;i<=m;i++) {
scanf("%d%d%d",&xx[i],&yy[i],&zz[i]);
add(xx[i],yy[i],zz[i]); add(yy[i],xx[i],zz[i]);
}
dij();
memset(head,0,sizeof(head)); cnt=0;
for(i=1;i<=n;i++) {
for(j=0;j<v[i].size();j++) add(v[i][j],i,w[i][j]);
}
solve();
}

BZOJ_1576_[Usaco2009 Jan]安全路经Travel&&BZOJ_3694_最短路_树链剖分+线段树的更多相关文章

  1. hdu5893 List wants to travel(树链剖分+线段树)

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submissi ...

  2. [Usaco2009 Jan]安全路经Travel BZOJ1576 Dijkstra+树链剖分+线段树

    分析: Dijkstra求最短路树,在最短路树上进行操作,详情可见上一篇博客:http://www.cnblogs.com/Winniechen/p/9042937.html 我觉得这个东西不压行写出 ...

  3. [BZOJ1576] [Usaco2009 Jan]安全路经Travel(堆优化dijk + (并查集 || 树剖))

    传送门 蒟蒻我原本还想着跑两边spfa,发现不行,就gg了. 首先这道题卡spfa,所以需要用堆优化的dijkstra求出最短路径 因为题目中说了,保证最短路径有且只有一条,所以可以通过dfs求出最短 ...

  4. bzoj 1576: [Usaco2009 Jan]安全路经Travel【spfa+树链剖分+线段树】

    这几天写USACO水题脑子锈住了--上来就贪心,一交就WA 事实上这个是一个叫最短路树的东西,因为能保证只有一条最短路,所以所有最短路合起来是一棵以1为根的树,并且在这棵树上,每个点被精灵占据的路是它 ...

  5. HDU 5893 List wants to travel(树链剖分+线段树)

    题目链接 HDU5893 $2016$年$ICPC$沈阳网络赛的$B$题.这道题其和 BZOJ2243 基本一样 那道题我也写了题解 点这里 两道题的区别就是$BZOJ$这题是点的权值,这道题是边权. ...

  6. bzoj 1576 [Usaco2009 Jan]安全路经Travel(树链剖分,线段树)

    [题意] 给定一个无向图,找到1-i所有的次短路经,要求与最短路径的最后一条边不重叠. [思路] 首先用dijkstra算法构造以1为根的最短路树. 将一条无向边看作两条有向边,考察一条不在最短路树上 ...

  7. bzoj 1576: [Usaco2009 Jan]安全路经Travel 树链剖分

    1576: [Usaco2009 Jan]安全路经Travel Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 665  Solved: 227[Sub ...

  8. 【BZOJ1576】[Usaco2009 Jan]安全路经Travel 最短路+并查集

    [BZOJ1576][Usaco2009 Jan]安全路经Travel Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, ...

  9. 【思维题 并查集 图论】bzoj1576: [Usaco2009 Jan]安全路经Travel

    有趣的思考题 Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第 ...

随机推荐

  1. [Python3网络爬虫开发实战] 1.3.1-lxml的安装

    lxml是Python的一个解析库,支持HTML和XML的解析,支持XPath解析方式,而且解析效率非常高.本节中,我们了解一下lxml的安装方式,这主要从Windows.Linux和Mac三大平台来 ...

  2. PHP读取超大的excel文件数据的方案

    场景和痛点 说明 今天因为一个老同学找我,说自己公司的物流业务都是现在用excel处理,按月因为数据量大,一个excel差不多有百万数据,文件有接近100M,打开和搜索就相当的慢 联想到场景:要导入数 ...

  3. Linux基础命令回顾

    前言 说到linux基础命令,网上一搜一箩筐,想学也有很多教程,如果你不幸看到此篇文章,想看就认真看完,毕竟你点进来了不是嘛? 我每次写的文章都是为了分享自己的学习成果或重要知识点,希望能帮助更多的人 ...

  4. 找到多个与名为“Home”的控制器匹配的类型。

    原因分析 其实上面已经讲的很清楚了,找到了两个同名Home控制器,需要配置命名空间来区分. 解决方法 方法一:修改RouteConfig.cs 方法二:修改RouteConfig.cs 和 Admin ...

  5. Thawte SSL Web Server

      Thawte SSL Web Server ,需要验证域名所有权和申请单位信息,属于企业验证(OV)型SSL证书,提供40位/56位/128位,最高支持256位的自适应加密.被2048位的根证书签 ...

  6. Java中static、final、static final的区别

    final: final可以修饰:属性,方法,类,局部变量(方法中的变量) final修饰的属性的初始化可以在编译期,也可以在运行期,初始化后不能被改变. final修饰的属性跟具体对象有关,在运行期 ...

  7. Springboot和SpringMVC区别

    Springboot和SpringMVC区别----http://www.cnblogs.com/xdyixia/p/9279644.html

  8. 使用mysql-proxy 快速实现mysql 集群 读写分离

    目前较为常见的mysql读写分离分为两种: 1. 基于程序代码内部实现:在代码中对select操作分发到从库:其它操作由主库执行:这类方法也是目前生产环境应用最广泛,知名的如DISCUZ X2.优点是 ...

  9. DP 简单题目练习

    ZOJ 1234 这道题目我表示也还不是特别能理解....还是太菜了T T 从后往前思考,因为只要后面有多的数在,那么C肯定是存在的,只要考虑是否把前两个数加在一起作为badness值这样两种情况来考 ...

  10. Bzoj3060 [Poi2012]Tour de Byteotia

    3060: [Poi2012]Tour de Byteotia Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 251  Solved: 161 Des ...