描述

现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的。但是现在我们给出它是第几小,需要你求出它所代表的序列.

输入

第一行有一个整数n(0<n<=10000);
随后有n行,每行是一个整数m,它代表着序列的第几小;

输出

输出一个序列,占一行,代表着第m小的序列。

样例输入

3
1
302715242
260726926

样例输出

abcdefghijkl
hgebkflacdji
gfkedhjblcia
解题思路:逆康托展开:就是根据某个排列的在所有全排列中的名次来确定这个排列。比如求1234的所有排列中排第20的排列是啥,那么就利用辗转相除法确定康托展开中每一项的系数k,然后每次输出当前未出现过的第k个元素即可。
下面演示一下计算过程:因为康托展开值是统计比第k个排列小前面所有排列的个数,所以求第20个排列对应的康托展开值应减1-->为19。
用19/3!=3...余1,说明首元素排在未出现元素的第3个(从下标0开始算),即首位为4;
用1/2!=0...余1,说明第二个元素排在未出现元素的第0个,即第二个元素为1;
用1/1!=1...余0,说明第三个元素排在未出现元素的第1个,即第三个元素为3;
最后一位自然就是2,所以1234的所有排列中排第20位的排列为4132。
AC代码:
 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
char str[];LL n,m,pos,j,k,len,tmp,fac[];bool flag[];
LL getfac(int n){//打印阶乘表
if(n==)return ;
LL ans=;
for(int i=;i<=n;++i)ans*=i;
return ans;
}
int main(){
for(int i=;i<;++i)fac[i]=getfac(i);//阶乘表
while(cin>>n){
while(n--){
cin>>m;k=;len=;m--;//m减掉次序1才是第m个排列的康托展开值
memset(flag,false,sizeof(flag));//初始化为未标记状态
for(LL i=;i<len;++i){
tmp=m/fac[len-i-];
for(j=;j<len-;++j){//遍历12个字符,找到还未出现的字母序列中的第tmp个
if(!flag[j]){
if(tmp==)break;
tmp--;
}
}
str[k++]='a'+j;
flag[j]=true;//标记第tmp个元素已出现
m%=fac[len-i-];
}
str[len-]='\0';
cout<<str<<endl;
}
}
return ;
}

题解报告:NYOJ 题目143 第几是谁?(逆康托展开)的更多相关文章

  1. 题解报告:poj 2299 Ultra-QuickSort(BIT求逆序数)

    Description In this problem, you have to analyze a particular sorting algorithm. The algorithm proce ...

  2. nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

    讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...

  3. 2015浙江财经大学ACM有奖周赛(一) 题解报告

    2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...

  4. cojs 强连通图计数1-2 题解报告

    OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...

  5. 题解报告:hdu 2069 Coin Change(暴力orDP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Problem Description Suppose there are 5 types of ...

  6. CF1169(div2)题解报告

    CF1169(div2)题解报告 A 不管 B 首先可以证明,如果存在解 其中必定有一个数的出现次数大于等于\(\frac{m}{2}\) 暴力枚举所有出现次数大于等于$\frac{m}{2} $的数 ...

  7. CFEducational Codeforces Round 66题解报告

    CFEducational Codeforces Round 66题解报告 感觉丧失了唯一一次能在CF上超过wqy的机会QAQ A 不管 B 不能直接累计乘法打\(tag\),要直接跳 C 考虑二分第 ...

  8. CF Round #580(div2)题解报告

    CF Round #580(div2)题解报告 T1 T2 水题,不管 T3 构造题,证明大约感性理解一下 我们想既然存在解 \(|a[n + i] - a[i]| = 1\) 这是必须要满足的 既然 ...

  9. cojs 二分图计数问题1-3 题解报告

    OwO 良心的FFT练手题,包含了所有的多项式基本运算呢 其中一部分解法参考了myy的uoj的blog 二分图计数 1: 实际是求所有图的二分图染色方案和 我们不妨枚举这个图中有多少个黑点 在n个点中 ...

随机推荐

  1. Shell 脚本小试牛刀(5) -- 超便捷脚本之高速ssh 登录其它主机

    假设你也是以Linux 为工作环境的童鞋,那么此文真是捷报!由于我的学习/工作中(特别是近期玩耍树莓派)常常会使用到ssh 登录其它主机,而每次使用ssh 登录都须要输入老长一大串让我非常烦.所以我写 ...

  2. [Bash] Search for Text with `grep`

    In this lesson, we’ll use grep to find text patterns. We’ll also go over some of the flags that grep ...

  3. Essay

    要养成先连续输入一对匹配的字符——比如"("和")",以及"{"和"}"——再在其中填写内容的习惯.如果先填写内容,很容 ...

  4. MaterialImageView

    https://github.com/zhaozhentao/MaterialImageView

  5. JQuery实现表格行的上移、下移、删除、增加

    <%@ page language="java" import="java.util.*" pageEncoding="GBK"%&g ...

  6. Hibernate中Criteria的完整用法?

    http://www.cnblogs.com/mabaishui/archive/2009/10/16/1584510.html

  7. Java类加载机制?

    深入研究Java类加载机制 类加载是Java程序运行的第一步,研究类的加载有助于了解JVM执行过程,并指导开发者采取更有效的措施配合程序执行. 研究类加载机制的第二个目的是让程序能动态的控制类加载,比 ...

  8. 临时表 数据在 内存 转移时间 将160秒的创建临时表时间放入定时任务 不到1秒的求和时间 hadoop 引入Hadoop 分布式计算

    SELECT SUM(pv) as pv_t  FROM 行 112247817表类型 InnoDB自动递增值 1082428327行格式  Compact索引长度 8.60 GB (9,235,93 ...

  9. JS之RegExp对象(二)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/zkn_CS_DN_2013/article/details/24243159 RegExp对象的经常 ...

  10. 工作笔记——sqlserver引号的运用

    一. sqlserver引号问题:因为要使用远程连接,所以sql语句要用单引号括起来 SELECT * FROM OPENQUERY ([192.168.***.***] ,'select * fro ...