认识Linux文件系统的架构
本文主要研究一下storm的OpaquePartitionedTridentSpoutExecutor
TridentTopology.newStream
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/TridentTopology.java
public Stream newStream(String txId, IOpaquePartitionedTridentSpout spout) {
return newStream(txId, new OpaquePartitionedTridentSpoutExecutor(spout));
}
TridentTopology.newStream方法,对于IOpaquePartitionedTridentSpout类型的spout会使用OpaquePartitionedTridentSpoutExecutor来包装;而KafkaTridentSpoutOpaque则实现了IOpaquePartitionedTridentSpout接口
TridentTopologyBuilder.buildTopology
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentTopologyBuilder.java
public StormTopology buildTopology(Map<String, Number> masterCoordResources) {
TopologyBuilder builder = new TopologyBuilder();
Map<GlobalStreamId, String> batchIdsForSpouts = fleshOutStreamBatchIds(false);
Map<GlobalStreamId, String> batchIdsForBolts = fleshOutStreamBatchIds(true);
Map<String, List<String>> batchesToCommitIds = new HashMap<>();
Map<String, List<ITridentSpout>> batchesToSpouts = new HashMap<>();
for(String id: _spouts.keySet()) {
TransactionalSpoutComponent c = _spouts.get(id);
if(c.spout instanceof IRichSpout) {
//TODO: wrap this to set the stream name
builder.setSpout(id, (IRichSpout) c.spout, c.parallelism);
} else {
String batchGroup = c.batchGroupId;
if(!batchesToCommitIds.containsKey(batchGroup)) {
batchesToCommitIds.put(batchGroup, new ArrayList<String>());
}
batchesToCommitIds.get(batchGroup).add(c.commitStateId);
if(!batchesToSpouts.containsKey(batchGroup)) {
batchesToSpouts.put(batchGroup, new ArrayList<ITridentSpout>());
}
batchesToSpouts.get(batchGroup).add((ITridentSpout) c.spout);
BoltDeclarer scd =
builder.setBolt(spoutCoordinator(id), new TridentSpoutCoordinator(c.commitStateId, (ITridentSpout) c.spout))
.globalGrouping(masterCoordinator(c.batchGroupId), MasterBatchCoordinator.BATCH_STREAM_ID)
.globalGrouping(masterCoordinator(c.batchGroupId), MasterBatchCoordinator.SUCCESS_STREAM_ID);
for(Map<String, Object> m: c.componentConfs) {
scd.addConfigurations(m);
}
Map<String, TridentBoltExecutor.CoordSpec> specs = new HashMap();
specs.put(c.batchGroupId, new CoordSpec());
BoltDeclarer bd = builder.setBolt(id,
new TridentBoltExecutor(
new TridentSpoutExecutor(
c.commitStateId,
c.streamName,
((ITridentSpout) c.spout)),
batchIdsForSpouts,
specs),
c.parallelism);
bd.allGrouping(spoutCoordinator(id), MasterBatchCoordinator.BATCH_STREAM_ID);
bd.allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.SUCCESS_STREAM_ID);
if(c.spout instanceof ICommitterTridentSpout) {
bd.allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.COMMIT_STREAM_ID);
}
for(Map<String, Object> m: c.componentConfs) {
bd.addConfigurations(m);
}
}
}
//......
return builder.createTopology();
}
TridentTopologyBuilder.buildTopology会将IOpaquePartitionedTridentSpout(OpaquePartitionedTridentSpoutExecutor)使用TridentSpoutExecutor包装,然后再使用TridentBoltExecutor包装为bolt
OpaquePartitionedTridentSpoutExecutor
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/OpaquePartitionedTridentSpoutExecutor.java
public class OpaquePartitionedTridentSpoutExecutor implements ICommitterTridentSpout<Object> {
protected final Logger LOG = LoggerFactory.getLogger(OpaquePartitionedTridentSpoutExecutor.class);
IOpaquePartitionedTridentSpout<Object, ISpoutPartition, Object> _spout;
//......
public OpaquePartitionedTridentSpoutExecutor(IOpaquePartitionedTridentSpout<Object, ISpoutPartition, Object> spout) {
_spout = spout;
}
@Override
public ITridentSpout.BatchCoordinator<Object> getCoordinator(String txStateId, Map conf, TopologyContext context) {
return new Coordinator(conf, context);
}
@Override
public ICommitterTridentSpout.Emitter getEmitter(String txStateId, Map conf, TopologyContext context) {
return new Emitter(txStateId, conf, context);
}
@Override
public Fields getOutputFields() {
return _spout.getOutputFields();
}
@Override
public Map<String, Object> getComponentConfiguration() {
return _spout.getComponentConfiguration();
}
}
OpaquePartitionedTridentSpoutExecutor实现了ICommitterTridentSpout,这里getCoordinator返回的是ITridentSpout.BatchCoordinator,getEmitter返回的是ICommitterTridentSpout.Emitter
ITridentSpout.BatchCoordinator
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/OpaquePartitionedTridentSpoutExecutor.java
public class Coordinator implements ITridentSpout.BatchCoordinator<Object> {
IOpaquePartitionedTridentSpout.Coordinator _coordinator;
public Coordinator(Map conf, TopologyContext context) {
_coordinator = _spout.getCoordinator(conf, context);
}
@Override
public Object initializeTransaction(long txid, Object prevMetadata, Object currMetadata) {
LOG.debug("Initialize Transaction. [txid = {}], [prevMetadata = {}], [currMetadata = {}]", txid, prevMetadata, currMetadata);
return _coordinator.getPartitionsForBatch();
}
@Override
public void close() {
LOG.debug("Closing");
_coordinator.close();
LOG.debug("Closed");
}
@Override
public void success(long txid) {
LOG.debug("Success [txid = {}]", txid);
}
@Override
public boolean isReady(long txid) {
boolean ready = _coordinator.isReady(txid);
LOG.debug("[isReady = {}], [txid = {}]", ready, txid);
return ready;
}
}
包装了spout的_coordinator,它的类型IOpaquePartitionedTridentSpout.Coordinator,这里仅仅是多了debug日志
ICommitterTridentSpout.Emitter
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/OpaquePartitionedTridentSpoutExecutor.java
public class Emitter www.gcyl152.com/ implements ICommitterTridentSpout.Emitter {
IOpaquePartitionedTridentSpout.Emitter<Object, ISpoutPartition, Object> _emitter;
TransactionalState _state;
TreeMap<Long, Map<String, Object>> _cachedMetas = new TreeMap<>();
Map<String, EmitterPartitionState> _partitionStates = new HashMap<>();
int _index;
int _numTasks;
public Emitter(String txStateId, Map conf, TopologyContext context) {
_emitter = _spout.getEmitter(conf, context);
_index = context.getThisTaskIndex(www.michenggw.com);
_numTasks = context.getComponentTasks(context.getThisComponentId()).size();
_state = TransactionalState.newUserState(conf, txStateId);
LOG.debug("Created {}", this);
}
Object _savedCoordinatorMeta = null;
boolean _changedMeta = false;
@Override
public void emitBatch(TransactionAttempt tx, Object coordinatorMeta, TridentCollector collector) {
LOG.debug("Emitting Batch. [transaction www.yigouyule2.cn= {}], [coordinatorMeta = {}], [collector = {}], [{}]",
tx, coordinatorMeta, collector, this);
if(_savedCoordinatorMeta==null || !_savedCoordinatorMeta.equals(coordinatorMeta)) {
_partitionStates.clear();
final List<ISpoutPartition> taskPartitions = _emitter.getPartitionsForTask(_index, _numTasks, coordinatorMeta);
for (ISpoutPartition partition : taskPartitions) {
_partitionStates.put(partition.getId(), new EmitterPartitionState(new RotatingTransactionalState(_state, partition.getId()), partition));
}
// refresh all partitions for backwards compatibility with old spout
_emitter.refreshPartitions(_emitter.getOrderedPartitions(coordinatorMeta));
_savedCoordinatorMeta = coordinatorMeta;
_changedMeta = true;
}
Map<String, Object> metas = new HashMap<>();
_cachedMetas.put(tx.getTransactionId(www.mcyllpt.com), metas);
Entry<Long, Map<String, Object>> entry = _cachedMetas.lowerEntry(tx.getTransactionId());
Map<String, Object> prevCached;
if(entry!=null) {
prevCached = entry.getValue();
} else {
prevCached = new HashMap<>();
}
for(Entry<String, EmitterPartitionState> e: _partitionStates.entrySet()) {
String id = e.getKey();
EmitterPartitionState s = e.getValue();
s.rotatingState.removeState(tx.getTransactionId());
Object lastMeta = prevCached.get(id);
if(lastMeta==null) lastMeta = s.rotatingState.getLastState();
Object meta = _emitter.emitPartitionBatch(tx, collector, s.partition, lastMeta);
metas.put(id, meta);
}
LOG.debug("Emitted Batch. [transaction = {}], [coordinatorMeta = {}], [collector = {}], [{}]",
tx, coordinatorMeta, collector, this);
}
@Override
public void success(TransactionAttempt tx) {
for(EmitterPartitionState state: _partitionStates.values()) {
state.rotatingState.cleanupBefore(tx.getTransactionId());
}
LOG.debug("Success transaction {}. [{}]", tx, this);
}
@Override
public void commit(TransactionAttempt attempt) {
LOG.debug("Committing transaction {}. [{}]", attempt, this);
// this code here handles a case where a previous commit failed, and the partitions
// changed since the last commit. This clears out any state for the removed partitions
// for this txid.
// we make sure only a single task ever does this. we're also guaranteed that
// it's impossible for there to be another writer to the directory for that partition
// because only a single commit can be happening at once. this is because in order for
// another attempt of the batch to commit, the batch phase must have succeeded in between.
// hence, all tasks for the prior commit must have finished committing (whether successfully or not)
if(_changedMeta && _index==0) {
Set<String> validIds = new HashSet<>();
for(ISpoutPartition p: _emitter.getOrderedPartitions(_savedCoordinatorMeta)) {
validIds.add(p.getId());
}
for(String existingPartition: _state.list("")) {
if(!validIds.contains(existingPartition)) {
RotatingTransactionalState s = new RotatingTransactionalState(_state, existingPartition);
s.removeState(attempt.getTransactionId());
}
}
_changedMeta = false;
}
Long txid = attempt.getTransactionId();
Map<String, Object> metas = _cachedMetas.remove(txid);
for(Entry<String, Object> entry: metas.entrySet()) {
_partitionStates.get(entry.getKey()).rotatingState.overrideState(txid, entry.getValue());
}
LOG.debug("Exiting commit method for transaction {}. [{}]", attempt, this);
}
@Override
public void close() {
LOG.debug("Closing");
_emitter.close();
LOG.debug("Closed");
}
@Override
public String toString() {
return "Emitter{" +
", _state=" + _state +
", _cachedMetas=" + _cachedMetas +
", _partitionStates=" + _partitionStates +
", _index=" + _index +
", _numTasks=" + _numTasks +
", _savedCoordinatorMeta=" + _savedCoordinatorMeta +
", _changedMeta=" + _changedMeta +
'}';
}
}
static class EmitterPartitionState {
public RotatingTransactionalState rotatingState;
public ISpoutPartition partition;
public EmitterPartitionState(RotatingTransactionalState s, ISpoutPartition p) {
rotatingState = s;
partition = p;
}
}
这里对spout的IOpaquePartitionedTridentSpout.Emitter进行了封装,_partitionStates使用了EmitterPartitionState
emitBatch方法首先计算_partitionStates,然后计算prevCached,最后调用_emitter.emitPartitionBatch(tx, collector, s.partition, lastMeta)
success方法调用state.rotatingState.cleanupBefore(tx.getTransactionId()),清空该txid之前的状态信息;commit方法主要是更新_partitionStates
KafkaTridentSpoutOpaque
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/trident/KafkaTridentSpoutOpaque.java
public class KafkaTridentSpoutOpaque<K,V> implements IOpaquePartitionedTridentSpout<List<Map<String, Object>>,
KafkaTridentSpoutTopicPartition, Map<String, Object>> {
private static final long serialVersionUID = -8003272486566259640L;
private static final Logger LOG = LoggerFactory.getLogger(KafkaTridentSpoutOpaque.class);
private final KafkaTridentSpoutManager<K, V> kafkaManager;
public KafkaTridentSpoutOpaque(KafkaSpoutConfig<K, V> conf) {
this(new KafkaTridentSpoutManager<>(conf));
}
public KafkaTridentSpoutOpaque(KafkaTridentSpoutManager<K, V> kafkaManager) {
this.kafkaManager = kafkaManager;
LOG.debug("Created {}", this.toString());
}
@Override
public Emitter<List<Map<String, Object>>, KafkaTridentSpoutTopicPartition, Map<String, Object>> getEmitter(
Map conf, TopologyContext context) {
return new KafkaTridentSpoutEmitter<>(kafkaManager, context);
}
@Override
public Coordinator<List<Map<String, Object>>> getCoordinator(Map conf, TopologyContext context) {
return new KafkaTridentSpoutOpaqueCoordinator<>(kafkaManager);
}
@Override
public Map<String, Object> getComponentConfiguration() {
return null;
}
@Override
public Fields getOutputFields() {
final Fields outputFields = kafkaManager.getFields();
LOG.debug("OutputFields = {}", outputFields);
return outputFields;
}
@Override
public final String toString() {
return super.toString() +
"{kafkaManager=" + kafkaManager + '}';
}
}
KafkaTridentSpoutOpaque的getCoordinator返回的是KafkaTridentSpoutOpaqueCoordinator;getEmitter返回的是KafkaTridentSpoutEmitter
KafkaTridentSpoutOpaqueCoordinator
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/trident/KafkaTridentSpoutOpaqueCoordinator.java
public class KafkaTridentSpoutOpaqueCoordinator<K,V> implements IOpaquePartitionedTridentSpout.Coordinator<List<Map<String, Object>>>,
Serializable {
private static final Logger LOG = LoggerFactory.getLogger(KafkaTridentSpoutOpaqueCoordinator.class);
private final TopicPartitionSerializer tpSerializer = new TopicPartitionSerializer();
private final KafkaTridentSpoutManager<K,V> kafkaManager;
public KafkaTridentSpoutOpaqueCoordinator(KafkaTridentSpoutManager<K, V> kafkaManager) {
this.kafkaManager = kafkaManager;
LOG.debug("Created {}", this.toString());
}
@Override
public boolean isReady(long txid) {
LOG.debug("isReady = true");
return true; // the "old" trident kafka spout always returns true, like this
}
@Override
public List<Map<String, Object>> getPartitionsForBatch() {
final ArrayList<TopicPartition> topicPartitions = new ArrayList<>(kafkaManager.getTopicPartitions());
LOG.debug("TopicPartitions for batch {}", topicPartitions);
List<Map<String, Object>> tps = new ArrayList<>();
for(TopicPartition tp : topicPartitions) {
tps.add(tpSerializer.toMap(tp));
}
return tps;
}
@Override
public void close() {
LOG.debug("Closed"); // the "old" trident kafka spout is no op like this
}
@Override
public final String toString() {
return super.toString() +
"{kafkaManager=" + kafkaManager +
'}';
}
}
这里的isReady始终返回true,getPartitionsForBatch方法主要是将kafkaManager.getTopicPartitions()信息转换为map结构
KafkaTridentSpoutEmitter
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/trident/KafkaTridentSpoutEmitter.java
public class KafkaTridentSpoutEmitter<K, V> implements IOpaquePartitionedTridentSpout.Emitter<
List<Map<String, Object>>,
KafkaTridentSpoutTopicPartition,
Map<String, Object>>,
Serializable {
private static final long serialVersionUID = -7343927794834130435L;
private static final Logger LOG = LoggerFactory.getLogger(KafkaTridentSpoutEmitter.class);
// Kafka
private final KafkaConsumer<K, V> kafkaConsumer;
// Bookkeeping
private final KafkaTridentSpoutManager<K, V> kafkaManager;
// set of topic-partitions for which first poll has already occurred, and the first polled txid
private final Map<TopicPartition, Long> firstPollTransaction = new HashMap<>();
// Declare some KafkaTridentSpoutManager references for convenience
private final long pollTimeoutMs;
private final KafkaSpoutConfig.FirstPollOffsetStrategy firstPollOffsetStrategy;
private final RecordTranslator<K, V> translator;
private final Timer refreshSubscriptionTimer;
private final TopicPartitionSerializer tpSerializer = new TopicPartitionSerializer();
private TopologyContext topologyContext;
/**
* Create a new Kafka spout emitter.
* @param kafkaManager The Kafka consumer manager to use
* @param topologyContext The topology context
* @param refreshSubscriptionTimer The timer for deciding when to recheck the subscription
*/
public KafkaTridentSpoutEmitter(KafkaTridentSpoutManager<K, V> kafkaManager, TopologyContext topologyContext, Timer refreshSubscriptionTimer) {
this.kafkaConsumer = kafkaManager.createAndSubscribeKafkaConsumer(topologyContext);
this.kafkaManager = kafkaManager;
this.topologyContext = topologyContext;
this.refreshSubscriptionTimer = refreshSubscriptionTimer;
this.translator = kafkaManager.getKafkaSpoutConfig().getTranslator();
final KafkaSpoutConfig<K, V> kafkaSpoutConfig = kafkaManager.getKafkaSpoutConfig();
this.pollTimeoutMs = kafkaSpoutConfig.getPollTimeoutMs();
this.firstPollOffsetStrategy = kafkaSpoutConfig.getFirstPollOffsetStrategy();
LOG.debug("Created {}", this.toString());
}
/**
* Creates instance of this class with default 500 millisecond refresh subscription timer
*/
public KafkaTridentSpoutEmitter(KafkaTridentSpoutManager<K, V> kafkaManager, TopologyContext topologyContext) {
this(kafkaManager, topologyContext, new Timer(500,
kafkaManager.getKafkaSpoutConfig().getPartitionRefreshPeriodMs(), TimeUnit.MILLISECONDS));
}
//......
@Override
public Map<String, Object> emitPartitionBatch(TransactionAttempt tx, TridentCollector collector,
KafkaTridentSpoutTopicPartition currBatchPartition, Map<String, Object> lastBatch) {
LOG.debug("Processing batch: [transaction = {}], [currBatchPartition = {}], [lastBatchMetadata = {}], [collector = {}]",
tx, currBatchPartition, lastBatch, collector);
final TopicPartition currBatchTp = currBatchPartition.getTopicPartition();
final Set<TopicPartition> assignments = kafkaConsumer.assignment();
KafkaTridentSpoutBatchMetadata lastBatchMeta = lastBatch == null ? null : KafkaTridentSpoutBatchMetadata.fromMap(lastBatch);
KafkaTridentSpoutBatchMetadata currentBatch = lastBatchMeta;
Collection<TopicPartition> pausedTopicPartitions = Collections.emptySet();
if (assignments == null || !assignments.contains(currBatchPartition.getTopicPartition())) {
LOG.warn("SKIPPING processing batch [transaction = {}], [currBatchPartition = {}], [lastBatchMetadata = {}], " +
"[collector = {}] because it is not part of the assignments {} of consumer instance [{}] " +
"of consumer group [{}]", tx, currBatchPartition, lastBatch, collector, assignments,
kafkaConsumer, kafkaManager.getKafkaSpoutConfig().getConsumerGroupId());
} else {
try {
// pause other topic-partitions to only poll from current topic-partition
pausedTopicPartitions = pauseTopicPartitions(currBatchTp);
seek(currBatchTp, lastBatchMeta, tx.getTransactionId());
// poll
if (refreshSubscriptionTimer.isExpiredResetOnTrue()) {
kafkaManager.getKafkaSpoutConfig().getSubscription().refreshAssignment();
}
final ConsumerRecords<K, V> records = kafkaConsumer.poll(pollTimeoutMs);
LOG.debug("Polled [{}] records from Kafka.", records.count());
if (!records.isEmpty()) {
emitTuples(collector, records);
// build new metadata
currentBatch = new KafkaTridentSpoutBatchMetadata(currBatchTp, records);
}
} finally {
kafkaConsumer.resume(pausedTopicPartitions);
LOG.trace("Resumed topic-partitions {}", pausedTopicPartitions);
}
LOG.debug("Emitted batch: [transaction = {}], [currBatchPartition = {}], [lastBatchMetadata = {}], " +
"[currBatchMetadata = {}], [collector = {}]", tx, currBatchPartition, lastBatch, currentBatch, collector);
}
return currentBatch == null ? null : currentBatch.toMap();
}
private void emitTuples(TridentCollector collector, ConsumerRecords<K, V> records) {
for (ConsumerRecord<K, V> record : records) {
final List<Object> tuple = translator.apply(record);
collector.emit(tuple);
LOG.debug("Emitted tuple {} for record [{}]", tuple, record);
}
}
@Override
public void refreshPartitions(List<KafkaTridentSpoutTopicPartition> partitionResponsibilities) {
LOG.trace("Refreshing of topic-partitions handled by Kafka. " +
"No action taken by this method for topic partitions {}", partitionResponsibilities);
}
/**
* Computes ordered list of topic-partitions for this task taking into consideration that topic-partitions
* for this task must be assigned to the Kafka consumer running on this task.
*
* @param allPartitionInfo list of all partitions as returned by {@link KafkaTridentSpoutOpaqueCoordinator}
* @return ordered list of topic partitions for this task
*/
@Override
public List<KafkaTridentSpoutTopicPartition> getOrderedPartitions(final List<Map<String, Object>> allPartitionInfo) {
List<TopicPartition> allTopicPartitions = new ArrayList<>();
for(Map<String, Object> map : allPartitionInfo) {
allTopicPartitions.add(tpSerializer.fromMap(map));
}
final List<KafkaTridentSpoutTopicPartition> allPartitions = newKafkaTridentSpoutTopicPartitions(allTopicPartitions);
LOG.debug("Returning all topic-partitions {} across all tasks. Current task index [{}]. Total tasks [{}] ",
allPartitions, topologyContext.getThisTaskIndex(), getNumTasks());
return allPartitions;
}
@Override
public List<KafkaTridentSpoutTopicPartition> getPartitionsForTask(int taskId, int numTasks,
List<Map<String, Object>> allPartitionInfo) {
final Set<TopicPartition> assignedTps = kafkaConsumer.assignment();
LOG.debug("Consumer [{}], running on task with index [{}], has assigned topic-partitions {}", kafkaConsumer, taskId, assignedTps);
final List<KafkaTridentSpoutTopicPartition> taskTps = newKafkaTridentSpoutTopicPartitions(assignedTps);
LOG.debug("Returning topic-partitions {} for task with index [{}]", taskTps, taskId);
return taskTps;
}
@Override
public void close() {
kafkaConsumer.close();
LOG.debug("Closed");
}
@Override
public final String toString() {
return super.toString() +
"{kafkaManager=" + kafkaManager +
'}';
}
}
这里的refreshSubscriptionTimer的interval取的是kafkaManager.getKafkaSpoutConfig().getPartitionRefreshPeriodMs(),默认是2000
emitPartitionBatch方法没调用一次都会判断refreshSubscriptionTimer.isExpiredResetOnTrue(),如果时间到了,就会调用kafkaManager.getKafkaSpoutConfig().getSubscription().refreshAssignment()刷新assignment
emitPartitionBatch方法主要是找到与该batch关联的partition,停止从其他parition拉取消息,然后根据firstPollOffsetStrategy以及lastBatchMeta信息,调用kafkaConsumer的seek相关方法seek到指定位置
之后就是用kafkaConsumer.poll(pollTimeoutMs)拉取数据,然后emitTuples;emitTuples方法会是用translator转换数据,然后调用collector.emit发射出去
refreshPartitions方法目前仅仅是trace下日志;getOrderedPartitions方法先将allPartitionInfo的数据从map结构反序列化回来,然后转换为KafkaTridentSpoutTopicPartition返回;getPartitionsForTask方法主要是通过kafkaConsumer.assignment()的信息转换为KafkaTridentSpoutTopicPartition返回
小结
storm-kafka-client提供了KafkaTridentSpoutOpaque这个spout作为trident的kafka spout(旧版的为OpaqueTridentKafkaSpout,在storm-kafka类库中),它实现了IOpaquePartitionedTridentSpout接口
TridentTopology.newStream方法,对于IOpaquePartitionedTridentSpout类型的spout会使用OpaquePartitionedTridentSpoutExecutor来包装;TridentTopologyBuilder.buildTopology会将IOpaquePartitionedTridentSpout(OpaquePartitionedTridentSpoutExecutor)先使用TridentSpoutExecutor包装,然后再使用TridentBoltExecutor包装为bolt
OpaquePartitionedTridentSpoutExecutor的getCoordinator返回的是ITridentSpout.BatchCoordinator,getEmitter返回的是ICommitterTridentSpout.Emitter;他们分别对KafkaTridentSpoutOpaque这个原始spout返回的KafkaTridentSpoutOpaqueCoordinator以及KafkaTridentSpoutEmitter进行包装再处理;其中对coordinator加了debug日志,对emitter则主要多了对EmitterPartitionState的存取
认识Linux文件系统的架构的更多相关文章
- 干货长文:Linux 文件系统与持久性内存介绍
关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ 1.Linux 虚拟文件系统介绍 在 Linux 系统中一切皆文件,除了通常所说的狭义的文件以 ...
- [转]分布式文件系统FastDFS架构剖析
[转]分布式文件系统FastDFS架构剖析 http://www.programmer.com.cn/4380/ 文/余庆 FastDFS是一款类Google FS的开源分布式文件系统,它用纯C语言实 ...
- linux驱动程序之电源管理之新版linux系统设备架构中关于电源管理方式的变更
新版linux系统设备架构中关于电源管理方式的变更 based on linux-2.6.32 一.设备模型各数据结构中电源管理的部分 linux的设备模型通过诸多结构体来联合描述,如struct d ...
- XFS:大数据环境下Linux文件系统的未来?
XFS:大数据环境下Linux文件系统的未来? XFS开发者Dave Chinner近日声称,他认为更多的用户应当考虑XFS.XFS经常被认为是适合拥有海量数据的用户的文件系统,在空间分配方面的可 ...
- Linux设备驱动开发详解-Note(11)--- Linux 文件系统与设备文件系统(3)
Linux 文件系统与设备文件系统(3) 成于坚持,败于止步 sysfs 文件系统与 Linux 设备模型 1.sysfs 文件系统 Linux 2.6 内核引入了 sysfs 文件系统,sysfs ...
- Linux命令及架构部署大全
1.Linux系统基础知识 Linux 基础优化配置 Linux系统根目录结构介绍 linux系统重要子目录介绍 Linux基础命令(之一)详解 Linux基础命令(之二)详解 Linux文件系统 L ...
- Linux文件系统1---概述
1.引言 本文所述关于文件管理的系列文章主要是对陈莉君老师所讲述的文件系统管理知识讲座的整理.Linux可以支持不同的文件系统,它源于unix文件系统,也是unix文件系统的一大特色. 本文主要先 ...
- linux文件系统软链接硬链接
引子 目前,UNIX的文件系统有很多种实现,例如UFS(基于BSD的UNIX文件系统).ext3.ext4.ZFS和Reiserfs等等. 不论哪一种文件系统,总是需要存储数据.硬盘的最小存储单位是扇 ...
- 【转帖】Linux 内核系统架构
Linux 内核系统架构 描述Linux内核的文章已经有上亿字了 但是对于初学者,还是应该多学习多看,毕竟上亿字不能一下子就明白的. 即使看了所有的Linux 内核文章,估计也还不是很明白,这时候 ...
随机推荐
- [已读]HTML5与CSS3权威指南第二版(下)
去年下半年前公司给买的(老付对我们确实蛮好的),一人挑一本,我当时一定是秀逗了.看的时候就发现,这本书的内容过时严重,即便它是新出不久的第.二.版.其他没什么说的,总之,不推荐看.
- salt-stack系列报错
master启动报错 实验环境为: [root@master salt]# cat /proc/version Linux version 3.10.0-327.el7.x86_64 (mockbui ...
- spring在非容器管理的类里获取bean
package com.qmtt.tools; import org.springframework.beans.BeansException; import org.springframework. ...
- Lambda表达式。
函数式编程思想: 面向对象思想:做一件事,先找能解决这件事的对象,然后调用该对象相应方法. 面向过程思想:只要能获取到结果,怎么做的不重要,重视结果,不重视过程. 冗余的代码: public stat ...
- ssm(Spring、Springmvc、Mybatis)实战之淘淘商城-第六天(非原创)
文章大纲 一.课程介绍二.今日内容简单介绍三.Httpclient介绍与实战四.项目源码与资料下载五.参考文章 一.课程介绍 一共14天课程(1)第一天:电商行业的背景.淘淘商城的介绍.搭建项目工 ...
- poj1190 生日蛋糕
题意: 要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱.当i < M时,要求Ri > ...
- QQ面板拖拽(慕课网DOM事件探秘)(下)
2.鼠标事件坐标获取 function fnDown(event) { var event = event || window.event; var oDrag = document.getEleme ...
- Java报表之JFreeChart
一.JFreeChart简介 JFreeChart是JAVA平台上的一个开放的图表绘制类库.它完全使用JAVA语言编写,是为applications,servlets以及JSP等使用所设计. JFre ...
- 类似QQ在线离线好友界面
把头像设置成圆形的代码如下: package com.example.lesson6_11_id19; import android.content.Context; import android.c ...
- KendoUI Grid Pager部分 Nan-Nan of x Items
相关问题: http://stackoverflow.com/questions/23941065/pager-error-in-kendo-gridnan-nan-of-1-items http:/ ...