传送门

设$dp[i][j][k][0/1]$表示在涂点$(i,j)$,涂了$k$次,当前点的颜色是否对,最多能刷对多少个格子

首先换行的时候肯定得多刷一次

然后是如果和前一个格子颜色相同,那么当前点是否刷对都要转移

如果和前一个格子颜色不相同,那么就考虑是否要再刷一次还是直接转移

 //minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int n,m,t,dp[N][N][N*N][],col[N][N],ans;
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),t=read();
for(int i=;i<=n;++i) for(int j=;j<=m;++j){
char ch;while((ch=getc())!=''&&ch!='');
col[i][j]=ch-'';
}
for(int i=;i<=n;++i) for(int j=;j<=m;++j) for(int k=;k<=t;++k){
if(j==){
dp[i][j][k][]=max(dp[i-][m][k-][],dp[i-][m][k-][]);
dp[i][j][k][]=max(dp[i-][m][k-][],dp[i-][m][k-][])+;
}else{
if(col[i][j]==col[i][j-]){
dp[i][j][k][]=dp[i][j-][k][]+;
dp[i][j][k][]=dp[i][j-][k][];
}else{
dp[i][j][k][]=max(dp[i][j-][k-][]+,dp[i][j-][k][]+);
dp[i][j][k][]=max(dp[i][j-][k][],dp[i][j-][k-][]);
}
}cmax(ans,max(dp[i][j][k][],dp[i][j][k][]));
}
printf("%d\n",ans);
return ;
}

洛谷P4158 [SCOI2009]粉刷匠的更多相关文章

  1. 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)

    次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...

  2. 洛谷 P4158 [SCOI2009]粉刷匠 题解

    每日一题 day59 打卡 Analysis 很容易看出是一个dp, dp[i][j[k][0/1]来表示到了(i,j)时,刷了k次,0表示这个没刷,1表示刷了. 于是有转移: 1.换行时一定要重新刷 ...

  3. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  4. P4158 [SCOI2009]粉刷匠(洛谷)

    今天A了个紫(我膨胀了),他看起来像个贪心一样,老师说我写的是dp(dp理解不深的缘故QWQ) 直接放题目描述(我旁边有个家伙让我放链接,我还是说明出处吧(万一出处没有了)我讲的大多数题目都是出自洛谷 ...

  5. P4158[SCOI2009]粉刷匠

    题目描述 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被 ...

  6. 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠

    P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...

  7. 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)

    [BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...

  8. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  9. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

随机推荐

  1. python之更加抽象 2014-4-6

    #更加抽象 12:50pm- 14:50 p112- 1.对象的魔力 多态 如count 在多种数据类型中都可以实现计数的功能 封装 对全局作用域中其他区域隐藏多余信息的原则 继承2.类和类型 创建类 ...

  2. Leetcode 139.单词拆分

    单词拆分 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词. 说明: 拆分时可以重复使用字典中的单词. 你可以假设字典 ...

  3. amoeba连接mysql--ERROR 2006 (HY000): MySQL server has gone away

    amoeba下载地址:http://sourceforge.net/projects/amoeba/files amoeba version:amoeba-mysql-binary-2.1.0-RC5 ...

  4. 【转】Java的path,classpath,java_home环境变量的配置与具体含义

    对于一个Java初学者来说,第一步要做的是安装jdk并配置环境变量,一般按照书上或者网上的步骤,一步步照着做就行了,但是对于初学者来说,很多问题没有解决,比如为什么很多配置方法各不相同,却都能够配置成 ...

  5. hdu - 1113 Word Amalgamation (stl)

    http://acm.hdu.edu.cn/showproblem.php?pid=1113 给定一个字典,然后每次输入一个字符串问字典中是否有单词与给定的字符串的所有字母一样(顺序可以打乱),按字典 ...

  6. [bzoj3527][Zjoi2014]力_FFT

    力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...

  7. 洛谷—— P3370 【模板】字符串哈希

    P3370 [模板]字符串哈希 题目描述 如题,给定N个字符串(第i个字符串长度为Mi,字符串内包含数字.大小写字母,大小写敏感),请求出N个字符串中共有多少个不同的字符串. 友情提醒:如果真的想好好 ...

  8. codeforces 762E(cdq分治)

    题意: n个电台,每个电台有三个属性xi, ri, fi.分别代表电台的坐标,电台的播报范围,以及播报的频率. 对于一对电台i, j,若min(ri, rj) >= |xi - xj|,那么他们 ...

  9. Ubuntu 16.04出现:qmake: could not exec '/usr/lib/x86_64-linux-gnu/qt4/bin/qmake': No such file or directory

    没有安装qt4-qmake,安装即可: sudo apt-get install qt4-qmake 参考: https://stackoverflow.com/questions/23703864/ ...

  10. git锁和钩子以及图形化界面

    1.锁机制 Locking Options 严格锁(strict locking):一个时刻,只有一个人可以占用资源. 乐观锁(optimistic locking):允许多个人同时修改同一文件.乐观 ...