python turtle 例子 海归绘图
太阳花
1 | # coding=utf-8 |
2 | import turtle |
3 | import time |
4 | |
5 | # 同时设置pencolor="red", fillcolor="yellow" |
6 | turtle.color("red", "yellow") |
7 | |
8 | # 开始填充 |
9 | turtle.begin_fill() |
10 | for _ in range(50): # 循环50次, 从0到49 |
11 | turtle.forward(200) # 前行200 |
12 | turtle.left(170) # 左转170° |
13 | # 结束填充 |
14 | turtle.end_fill() |
15 | |
16 | # 不会退出, 而是等待 |
17 | turtle.mainloop() |
五角星
# coding=utf-8
import turtle
import time turtle.pensize(5) # 线宽
turtle.pencolor("yellow") # 线的眼神
turtle.fillcolor("red") # 填充颜色 def draw_5AnglesShape():
turtle.begin_fill()
for _ in range(5):
turtle.forward(200)
turtle.right(144)
turtle.end_fill()
time.sleep(2) def draw_word(): # 写文字
turtle.penup()
turtle.goto(-150, -120)
turtle.color("violet")
turtle.write("五角星绘制完毕", font=('Arial', 40, 'normal')) if __name__ == "__main__":
draw_5AnglesShape()
draw_word()
turtle.mainloop()
彩色螺旋线
1 | # coding=utf-8 |
2 | import turtle |
3 | |
4 | from datetime import * |
5 | import time |
6 | |
7 | def doWork(): |
8 | turtle.pensize(2) |
9 | turtle.bgcolor("black") |
10 | colors = ["red","yellow","purple","blue"] |
11 | #turtle.tracer(False) |
12 | for x in range(400): |
13 | turtle.forward(2*x) |
14 | turtle.color(colors[x % 4]) |
15 | turtle.left(91) |
16 | #turtle.tracer(True) |
17 | # input() 可以有效解决闪退问题,或者下面的方法 |
18 | |
19 | if __name__ == "__main__": |
20 | doWork() |
21 | turtle.done(); |
22 |
方形蜘蛛网
# coding=utf-8
import turtle from datetime import *
import time def doWork(t):
for x in range(100):
t.forward(x)
t.left(90) if __name__ == "__main__":
t = turtle.Pen()
doWork(t)
turtle.done()
旋转的海龟
# coding=utf-8
import turtle from datetime import *
import time def doWork(t):
for x in range(100):
t.forward(x)
t.left(91) if __name__ == "__main__":
t = turtle.Pen()
doWork(t)
彩色的旋转的海龟
# coding=utf-8
import turtle from datetime import *
import time def doWork(t):
colors = ["red", "yellow", "blue", "green"]
for x in range(100):
t.pencolor(colors[x%4])
t.forward(x)
t.left(91) if __name__ == "__main__":
t = turtle.Pen()
doWork(t)
彩色的旋转的海龟2
# coding=utf-8
import turtle from datetime import *
import time def doWork(t):
turtle.bgcolor("black") # 修改背景颜色
sides = 6
colors = ["red", "yellow", "blue", "green"]
for x in range(100):
t.pencolor(colors[x%4])
t.forward(x * 3/sides + x)
t.left(360/sides + 1)
t.width(x*sides/200) if __name__ == "__main__":
t = turtle.Pen()
doWork(t)
蟒蛇绘制
1 | # coding=utf-8 |
2 | import turtle |
3 | from datetime import * |
4 | import time |
5 | |
6 | if __name__ == "__main__": |
7 | # 屏幕大小为(650,300) |
8 | turtle.setup(650,300) |
9 | turtle.penup() |
10 | turtle.fd(-250) |
11 | turtle.pendown() |
12 | turtle.pensize(10) |
13 | turtle.pencolor("yellow") |
14 | turtle.seth(-40) |
15 | for i in range(4): |
16 | turtle.circle(40,80) |
17 | turtle.circle(-40,80) |
18 | turtle.circle(40,80/2) |
19 | turtle.fd(40) |
20 | turtle.circle(16,180) |
21 | turtle.fd(40 * 2/3) |
22 | turtle.done() |
图形绘制
1 | # coding=utf-8 |
2 | import turtle |
3 | from datetime import * |
4 | import time |
5 | |
6 | if __name__ == "__main__": |
7 | turtle.pensize(3) |
8 | turtle.penup() |
9 | turtle.goto(-200,-50) |
10 | turtle.pendown() |
11 | turtle.begin_fill() |
12 | turtle.color("red") |
13 | turtle.circle(40, steps=3) |
14 | turtle.end_fill() |
15 | |
16 | |
17 | turtle.penup() |
18 | turtle.goto(-100,-50) |
19 | turtle.pendown() |
20 | turtle.begin_fill() |
21 | turtle.color("blue") |
22 | turtle.circle(40, steps=4) |
23 | turtle.end_fill() |
24 | |
25 | turtle.penup() |
26 | turtle.goto(0,-50) |
27 | turtle.pendown() |
28 | turtle.begin_fill() |
29 | turtle.color("green") |
30 | turtle.circle(40, steps=5) |
31 | turtle.end_fill() |
32 | |
33 | turtle.penup() |
34 | turtle.goto(100,-50) |
35 | turtle.pendown() |
36 | turtle.begin_fill() |
37 | turtle.color("yellow") |
38 | turtle.circle(40, steps=6) |
39 | turtle.end_fill() |
40 | |
41 | turtle.penup() |
42 | turtle.goto(200,-50) |
43 | turtle.pendown() |
44 | turtle.begin_fill() |
45 | turtle.color("purple") |
46 | turtle.circle(40) |
47 | turtle.end_fill() |
48 | |
49 | turtle.color("green") |
50 | turtle.penup() |
51 | turtle.goto(-100,50) |
52 | turtle.pendown() |
53 | turtle.write( u"彩色简单图形".encode("utf-8"), |
54 | font = ("Times", 18, "bold") ) |
55 | turtle.hideturtle() |
56 | |
57 | turtle.done() |
58 |
三角塔的绘制
#encoding: utf8 import turtle stepSize = 30 def draw1GreenTriangle(): """ 画有一个绿色的小小三角形 从图片上看, 整个图形就是由27个小三角形组成的 """ global stepSize turtle.color("black", "green") # 笔的颜色的黑色, 填充是绿色 turtle.begin_fill() # 开始填充 turtle.setheading(240) # 头向左下 turtle.forward(stepSize) # 移动指定个单位 turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize) # 移动10个单位 turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize) # 移动10个单位 turtle.end_fill() # 结束填充 def draw3GreenTriangle(): """ 就是画三个小三角形 原图片可以看做是9个这样的3个三角形组成的 """ draw1GreenTriangle(); turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize) # 移动指定单位 draw1GreenTriangle(); # 画第二个三角形 turtle.setheading(0) # 头向左 turtle.forward(stepSize) # 移动指定单位 draw1GreenTriangle(); # 画第三个三角形 turtle.forward(stepSize) # 移动指定个单位 def draw9GreenTriangle(): """ 就是画九个三角形 原图片可以看做是3个这样的9个三角形组成的 """ draw3GreenTriangle() # 画第一个三个小三角形 turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize*2) # 移动2个指定单位 draw3GreenTriangle() # 画第二个三个小三角形 turtle.setheading(0) # 头向左 turtle.forward(stepSize*2) # 移动2个指定单位 draw3GreenTriangle() # 画第三个三个小三角形 turtle.forward(stepSize*2) # 移动2个指定单位 def draw27GreenTriangle(): """ 画出最终图像, 就是27个小三角形, 其由三个draw9GreenTriangle()的结果组成 """ draw9GreenTriangle() turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize*4) # 移动4个指定单位 draw9GreenTriangle() turtle.setheading(0) # 头向左 turtle.forward(stepSize*4) # 移动4个指定单位 draw9GreenTriangle() if __name__ == "__main__": draw27GreenTriangle(); turtle.mainloop()
小猪佩奇
# coding:utf-8 import turtle as t def drawNose():
# 配置画笔属性
t.pensize(4)
t.hideturtle()
t.colormode(255)
t.color((255,155,192),"pink")
t.setup(840,500)
t.speed(10) # 绘制鼻圈
t.pu()
t.goto(-100,100)
t.pd()
t.seth(-30)
t.begin_fill()
a=0.4
for i in range(120):
if 0<=i<30 or 60<=i<90:
a=a+0.08
t.lt(3) #向左转3度
t.fd(a) #向前走a的步长
else:
a=a-0.08
t.lt(3)
t.fd(a)
t.end_fill() # 绘制鼻孔
t.pu()
t.seth(90)
t.fd(25)
t.seth(0)
t.fd(10)
t.pd()
t.pencolor(255,155,192)
t.seth(10)
t.begin_fill()
t.circle(5)
t.color(160,82,45)
t.end_fill() t.pu()
t.seth(0)
t.fd(20)
t.pd()
t.pencolor(255,155,192)
t.seth(10)
t.begin_fill()
t.circle(5)
t.color(160,82,45)
t.end_fill() def drawHead():
# 绘制吹风机头
t.color((255,155,192),"pink")
t.pu()
t.seth(90)
t.fd(41)
t.seth(0)
t.fd(0)
t.pd()
t.begin_fill()
t.seth(180)
t.circle(300,-30)
t.circle(100,-60)
t.circle(80,-100)
t.circle(150,-20)
t.circle(60,-95)
t.seth(161)
t.circle(-300,15)
t.pu()
t.goto(-100,100)
t.pd()
t.seth(-30)
a=0.4
for i in range(60):
if 0<=i<30 or 60<=i<90:
a=a+0.08
t.lt(3) #向左转3度
t.fd(a) #向前走a的步长
else:
a=a-0.08
t.lt(3)
t.fd(a)
t.end_fill() def drawEar():
# 绘制耳朵
t.color((255,155,192),"pink")
t.pu()
t.seth(90)
t.fd(-7)
t.seth(0)
t.fd(70)
t.pd()
t.begin_fill()
t.seth(100)
t.circle(-50,50)
t.circle(-10,120)
t.circle(-50,54)
t.end_fill() t.pu()
t.seth(90)
t.fd(-12)
t.seth(0)
t.fd(30)
t.pd()
t.begin_fill()
t.seth(100)
t.circle(-50,50)
t.circle(-10,120)
t.circle(-50,56)
t.end_fill()def drawEye():# 绘制眼睛
t.color((255,155,192),"white")
t.pu()
t.seth(90)
t.fd(-20)
t.seth(0)
t.fd(-95)
t.pd()
t.begin_fill()
t.circle(15)
t.end_fill() t.color("black")
t.pu()
t.seth(90)
t.fd(12)
t.seth(0)
t.fd(-3)
t.pd()
t.begin_fill()
t.circle(3)
t.end_fill() t.color((255,155,192),"white")
t.pu()
t.seth(90)
t.fd(-25)
t.seth(0)
t.fd(40)
t.pd()
t.begin_fill()
t.circle(15)
t.end_fill() t.color("black")
t.pu()
t.seth(90)
t.fd(12)
t.seth(0)
t.fd(-3)
t.pd()
t.begin_fill()
t.circle(3)
t.end_fill()def drawCheek():# 绘制腮
t.color((255,155,192))
t.pu()
t.seth(90)
t.fd(-95)
t.seth(0)
t.fd(65)
t.pd()
t.begin_fill()
t.circle(30)
t.end_fill()def drawMouth():# 绘制嘴
t.color(239,69,19)
t.pu()
t.seth(90)
t.fd(15)
t.seth(0)
t.fd(-100)
t.pd()
t.seth(-80)
t.circle(30,40)
t.circle(40,80)def drawFigure():# 绘制体型
t.color("red",(255,99,71))
t.pu()
t.seth(90)
t.fd(-20)
t.seth(0)
t.fd(-78)
t.pd()
t.begin_fill()
t.seth(-130)
t.circle(100,10)
t.circle(300,30)
t.seth(0)
t.fd(230)
t.seth(90)
t.circle(300,30)
t.circle(100,3)
t.color((255,155,192),(255,100,100))
t.seth(-135)
t.circle(-80,63)
t.circle(-150,24)
t.end_fill()def drawHand():# 绘制小手
t.color((255,155,192))
t.pu()
t.seth(90)
t.fd(-40)
t.seth(0)
t.fd(-27)
t.pd()
t.seth(-160)
t.circle(300,15)
t.pu()
t.seth(90)
t.fd(15)
t.seth(0)
t.fd(0)
t.pd()
t.seth(-10)
t.circle(-20,90) t.pu()
t.seth(90)
t.fd(30)
t.seth(0)
t.fd(237)
t.pd()
t.seth(-20)
t.circle(-300,15)
t.pu()
t.seth(90)
t.fd(20)
t.seth(0)
t.fd(0)
t.pd()
t.seth(-170)
t.circle(20,90)def drawLeg():# 绘制腿脚
t.pensize(10)
t.color((240,128,128))
t.pu()
t.seth(90)
t.fd(-75)
t.seth(0)
t.fd(-180)
t.pd()
t.seth(-90)
t.fd(40)
t.seth(-180)
t.color("black")
t.pensize(15)
t.fd(20) t.pensize(10)
t.color((240,128,128))
t.pu()
t.seth(90)
t.fd(40)
t.seth(0)
t.fd(90)
t.pd()
t.seth(-90)
t.fd(40)
t.seth(-180)
t.color("black")
t.pensize(15)
t.fd(20)def drawTail():# 绘制尾巴
t.pensize(4)
t.color((255,155,192))
t.pu()
t.seth(90)
t.fd(70)
t.seth(0)
t.fd(95)
t.pd()
t.seth(0)
t.circle(70,20)
t.circle(10,330)
t.circle(70,30)if __name__ =="__main__":
drawNose()
drawHead()
drawEar()
drawEye()
drawCheek()
drawMouth()
drawFigure()
drawHand()
drawLeg()
drawTail()
t.done()
玫瑰花
#encoding: utf8 from turtle import * import time # 设置屏幕尺寸为600*800 # 窗口位置为(1000,100) setup(600,800,1000, 100) speed(0) penup() seth(90) fd(340) seth(0) pendown() speed(5) begin_fill() fillcolor('red') circle(50,30) for i in range(10): fd(1) left(10) circle(40,40) for i in range(6): fd(1) left(3) circle(80,40) for i in range(20): fd(0.5) left(5) circle(80,45) for i in range(10): fd(2) left(1) circle(80,25) for i in range(20): fd(1) left(4) circle(50,50) time.sleep(0.1) circle(120,55) speed(0) seth(-90) fd(70) right(150) fd(20) left(140) circle(140,90) left(30) circle(160,100) left(130) fd(25) penup() right(150) circle(40,80) pendown() left(115) fd(60) penup() left(180) fd(60) pendown() end_fill() right(120) circle(-50,50) circle(-20,90) speed(1) fd(75) speed(0) circle(90,110) penup() left(162) fd(185) left(170) pendown() circle(200,10) circle(100,40) circle(-52,115) left(20) circle(100,20) circle(300,20) speed(1) fd(250) penup() speed(0) left(180) fd(250) circle(-300,7) right(80) circle(200,5) pendown() left(60) begin_fill() fillcolor('green') circle(-80,100) right(90) fd(10) left(20) circle(-63,127) end_fill() penup() left(50) fd(20) left(180) pendown() circle(200,25) penup() right(150) fd(180) right(40) pendown() begin_fill() fillcolor('green') circle(-100,80) right(150) fd(10) left(60) circle(-80,98) end_fill() penup() left(60) fd(13) left(180) pendown() speed(1) circle(-200,23) exitonclick()
绘制雪花
科赫曲线是de Rham曲线的特例
给定线段AB,科赫曲线可以由以下步骤生成
将线段分成三等份(AC,CD,DB)
以CD为底,向外(内外随意)画一个等边三角形DMC
将线段CD移去
分别对AC,CM,MD,DB重复1~3
太极阴阳
# coding:utf-8
from turtle import * def yin(radius, color1, color2):
width(3)
color("black", color1)
begin_fill()
circle(radius/2., 180)
circle(radius, 180)
left(180)
circle(-radius/2., 180)
end_fill()
left(90)
up()
forward(radius*0.35)
right(90)
down()
color(color1, color2)
begin_fill()
circle(radius*0.15)
end_fill()
left(90)
up()
backward(radius*0.35)
down()
left(90) def main():
reset()
yin(200, "black", "white")
yin(200, "white", "black")
ht()
return "Done!" if __name__ == '__main__':
main()
mainloop()
地球
# coding:utf-8 from turtle import Screen, Turtle, mainloop
from time import clock, sleep def mn_eck(p, ne,sz):
turtlelist = [p]
#create ne-1 additional turtles
for i in range(1,ne):
q = p.clone()
q.rt(360.0/ne)
turtlelist.append(q)
p = q
for i in range(ne):
c = abs(ne/2.0-i)/(ne*.7)
# let those ne turtles make a step
# in parallel:
for t in turtlelist:
t.rt(360./ne)
t.pencolor(1-c,0,c)
t.fd(sz) def main():
s = Screen()
s.bgcolor("black")
p=Turtle()
p.speed(0)
p.hideturtle()
p.pencolor("red")
p.pensize(3) s.tracer(36,0) at = clock()
mn_eck(p, 36, 19)
et = clock()
z1 = et-at sleep(1) at = clock()
while any([t.undobufferentries() for t in s.turtles()]):
for t in s.turtles():
t.undo()
et = clock()
return "runtime: %.3f sec" % (z1+et-at) if __name__ == '__main__':
msg = main()
print(msg)
mainloop()
两个画布
# coding:utf-8 from turtle import TurtleScreen, RawTurtle, TK def main():
root = TK.Tk()
cv1 = TK.Canvas(root, width=300, height=200, bg="#ddffff")
cv2 = TK.Canvas(root, width=300, height=200, bg="#ffeeee")
cv1.pack()
cv2.pack() s1 = TurtleScreen(cv1)
s1.bgcolor(0.85, 0.85, 1)
s2 = TurtleScreen(cv2)
s2.bgcolor(1, 0.85, 0.85) p = RawTurtle(s1)
q = RawTurtle(s2) p.color("red", (1, 0.85, 0.85))
p.width(3)
q.color("blue", (0.85, 0.85, 1))
q.width(3) for t in p,q:
t.shape("turtle")
t.lt(36) q.lt(180) for t in p, q:
t.begin_fill()
for i in range(5):
for t in p, q:
t.fd(50)
t.lt(72)
for t in p,q:
t.end_fill()
t.lt(54)
t.pu()
t.bk(50) return "EVENTLOOP" if __name__ == '__main__':
main()
TK.mainloop() # keep window open until user closes it
一棵树
# coding:utf-8 from turtle import Turtle, mainloop
from time import clock def tree(plist, l, a, f):
""" plist is list of pens
l is length of branch
a is half of the angle between 2 branches
f is factor by which branch is shortened
from level to level."""
if l > 3:
lst = []
for p in plist:
p.forward(l)
q = p.clone()
p.left(a)
q.right(a)
lst.append(p)
lst.append(q)
for x in tree(lst, l*f, a, f):
yield None def maketree():
p = Turtle()
p.setundobuffer(None)
p.hideturtle()
p.speed(0)
p.getscreen().tracer(30,0)
p.left(90)
p.penup()
p.forward(-210)
p.pendown()
t = tree([p], 200, 65, 0.6375)
for x in t:
pass
print(len(p.getscreen().turtles())) def main():
a=clock()
maketree()
b=clock()
return "done: %.2f sec." % (b-a) if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
排序
# coding:utf-8
from turtle import *
import random class Block(Turtle): def __init__(self, size):
self.size = size
Turtle.__init__(self, shape="square", visible=False)
self.pu()
self.shapesize(size * 1.5, 1.5, 2) # square-->rectangle
self.fillcolor("black")
self.st() def glow(self):
self.fillcolor("red") def unglow(self):
self.fillcolor("black") def __repr__(self):
return "Block size: {0}".format(self.size) class Shelf(list): def __init__(self, y):
"create a shelf. y is y-position of first block"
self.y = y
self.x = -150 def push(self, d):
width, _, _ = d.shapesize()
# align blocks by the bottom edge
y_offset = width / 2 * 20
d.sety(self.y + y_offset)
d.setx(self.x + 34 * len(self))
self.append(d) def _close_gap_from_i(self, i):
for b in self[i:]:
xpos, _ = b.pos()
b.setx(xpos - 34) def _open_gap_from_i(self, i):
for b in self[i:]:
xpos, _ = b.pos()
b.setx(xpos + 34) def pop(self, key):
b = list.pop(self, key)
b.glow()
b.sety(200)
self._close_gap_from_i(key)
return b def insert(self, key, b):
self._open_gap_from_i(key)
list.insert(self, key, b)
b.setx(self.x + 34 * key)
width, _, _ = b.shapesize()
# align blocks by the bottom edge
y_offset = width / 2 * 20
b.sety(self.y + y_offset)
b.unglow() def isort(shelf):
length = len(shelf)
for i in range(1, length):
hole = i
while hole > 0 and shelf[i].size < shelf[hole - 1].size:
hole = hole - 1
shelf.insert(hole, shelf.pop(i))
return def ssort(shelf):
length = len(shelf)
for j in range(0, length - 1):
imin = j
for i in range(j + 1, length):
if shelf[i].size < shelf[imin].size:
imin = i
if imin != j:
shelf.insert(j, shelf.pop(imin))def partition(shelf, left, right, pivot_index):
pivot = shelf[pivot_index]
shelf.insert(right, shelf.pop(pivot_index))
store_index = left
for i in range(left, right):# range is non-inclusive of ending valueif shelf[i].size < pivot.size:
shelf.insert(store_index, shelf.pop(i))
store_index = store_index +1
shelf.insert(store_index, shelf.pop(right))# move pivot to correct positionreturn store_index def qsort(shelf, left, right):if left < right:
pivot_index = left
pivot_new_index = partition(shelf, left, right, pivot_index)
qsort(shelf, left, pivot_new_index -1)
qsort(shelf, pivot_new_index +1, right)def randomize():
disable_keys()
clear()
target = list(range(10))
random.shuffle(target)for i, t in enumerate(target):for j in range(i, len(s)):if s[j].size == t +1:
s.insert(i, s.pop(j))
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()def show_text(text, line=0):
line =20* line
goto(0,-250- line)
write(text, align="center", font=("Courier",16,"bold"))def start_ssort():
disable_keys()
clear()
show_text("Selection Sort")
ssort(s)
clear()
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()def start_isort():
disable_keys()
clear()
show_text("Insertion Sort")
isort(s)
clear()
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()def start_qsort():
disable_keys()
clear()
show_text("Quicksort")
qsort(s,0, len(s)-1)
clear()
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()def init_shelf():global s
s =Shelf(-200)
vals =(4,2,8,9,1,5,10,3,7,6)for i in vals:
s.push(Block(i))def disable_keys():
onkey(None,"s")
onkey(None,"i")
onkey(None,"q")
onkey(None,"r")def enable_keys():
onkey(start_isort,"i")
onkey(start_ssort,"s")
onkey(start_qsort,"q")
onkey(randomize,"r")
onkey(bye,"space")def main():
getscreen().clearscreen()
ht(); penup()
init_shelf()
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()
listen()return"EVENTLOOP" instructions1 ="press i for insertion sort, s for selection sort, q for quicksort"
instructions2 ="spacebar to quit, r to randomize"if __name__=="__main__":
msg = main()
mainloop()
圆舞曲
1 | # coding:utf-8 |
2 | |
3 | from turtle import * |
4 | |
5 | def stop(): |
6 | global running |
7 | running = False |
8 | |
9 | def main(): |
10 | global running |
11 | clearscreen() |
12 | bgcolor("gray10") |
13 | tracer(False) |
14 | shape("triangle") |
15 | f = 0.793402 |
16 | phi = 9.064678 |
17 | s = 5 |
18 | c = 1 |
19 | # create compound shape |
20 | sh = Shape("compound") |
21 | for i in range(10): |
22 | shapesize(s) |
23 | p =get_shapepoly() |
24 | s *= f |
25 | c *= f |
26 | tilt(-phi) |
27 | sh.addcomponent(p, (c, 0.25, 1-c), "black") |
28 | register_shape("multitri", sh) |
29 | # create dancers |
30 | shapesize(1) |
31 | shape("multitri") |
32 | pu() |
33 | setpos(0, -200) |
34 | dancers = [] |
35 | for i in range(180): |
36 | fd(7) |
37 | tilt(-4) |
38 | lt(2) |
39 | update() |
40 | if i % 12 == 0: |
41 | dancers.append(clone()) |
42 | home() |
43 | # dance |
44 | running = True |
45 | onkeypress(stop) |
46 | listen() |
47 | cs = 1 |
48 | while running: |
49 | ta = -4 |
50 | for dancer in dancers: |
51 | dancer.fd(7) |
52 | dancer.lt(2) |
53 | dancer.tilt(ta) |
54 | ta = -4 if ta > 0 else 2 |
55 | if cs < 180: |
56 | right(4) |
57 | shapesize(cs) |
58 | cs *= 1.005 |
59 | update() |
60 | return "DONE!" |
61 | |
62 | if __name__=='__main__': |
63 | print(main()) |
64 | mainloop() |
65 |
地球与行星
# coding:utf-8 from turtle import Shape, Turtle, mainloop, Vec2D as Vec G = 8 class GravSys(object):
def __init__(self):
self.planets = []
self.t = 0
self.dt = 0.01
def init(self):
for p in self.planets:
p.init()
def start(self):
for i in range(10000):
self.t += self.dt
for p in self.planets:
p.step() class Star(Turtle):
def __init__(self, m, x, v, gravSys, shape):
Turtle.__init__(self, shape=shape)
self.penup()
self.m = m
self.setpos(x)
self.v = v
gravSys.planets.append(self)
self.gravSys = gravSys
self.resizemode("user")
self.pendown()
def init(self):
dt = self.gravSys.dt
self.a = self.acc()
self.v = self.v + 0.5*dt*self.a
def acc(self):
a = Vec(0,0)
for planet in self.gravSys.planets:
if planet != self:
v = planet.pos()-self.pos()
a += (G*planet.m/abs(v)**3)*v
return a
def step(self):
dt = self.gravSys.dt
self.setpos(self.pos() + dt*self.v)
if self.gravSys.planets.index(self) != 0:
self.setheading(self.towards(self.gravSys.planets[0]))
self.a = self.acc()
self.v = self.v + dt*self.a ## create compound yellow/blue turtleshape for planets def main():
s = Turtle()
s.reset()
s.getscreen().tracer(0,0)
s.ht()
s.pu()
s.fd(6)
s.lt(90)
s.begin_poly()
s.circle(6, 180)
s.end_poly()
m1 = s.get_poly()
s.begin_poly()
s.circle(6,180)
s.end_poly()
m2 = s.get_poly() planetshape = Shape("compound")
planetshape.addcomponent(m1,"orange")
planetshape.addcomponent(m2,"blue")
s.getscreen().register_shape("planet", planetshape)
s.getscreen().tracer(1,0) ## setup gravitational system
gs = GravSys()
sun = Star(1000000, Vec(0,0),Vec(0,-2.5), gs,"circle")
sun.color("yellow")
sun.shapesize(1.8)
sun.pu()
earth =Star(12500,Vec(210,0),Vec(0,195), gs,"planet")
earth.pencolor("green")
earth.shapesize(0.8)
moon =Star(1,Vec(220,0),Vec(0,295), gs,"planet")
moon.pencolor("blue")
moon.shapesize(0.5)
gs.init()
gs.start()return"Done!"if __name__ =='__main__':
main()
mainloop()
细胞分裂
1 | # coding:utf-8 |
2 | |
3 | from turtle import * |
4 | from math import cos, pi |
5 | from time import clock, sleep |
6 | |
7 | f = (5**0.5-1)/2.0 # (sqrt(5)-1)/2 -- golden ratio |
8 | d = 2 * cos(3*pi/10) |
9 | |
10 | def kite(l): |
11 | fl = f * l |
12 | lt(36) |
13 | fd(l) |
14 | rt(108) |
15 | fd(fl) |
16 | rt(36) |
17 | fd(fl) |
18 | rt(108) |
19 | fd(l) |
20 | rt(144) |
21 | |
22 | def dart(l): |
23 | fl = f * l |
24 | lt(36) |
25 | fd(l) |
26 | rt(144) |
27 | fd(fl) |
28 | lt(36) |
29 | fd(fl) |
30 | rt(144) |
31 | fd(l) |
32 | rt(144) |
33 | |
34 | def inflatekite(l, n): |
35 | if n == 0: |
36 | px, py = pos() |
37 | h, x, y = int(heading()), round(px,3), round(py,3) |
38 | tiledict[(h,x,y)] = True |
39 | return |
40 | fl = f * l |
41 | lt(36) |
42 | inflatedart(fl, n-1) |
43 | fd(l) |
44 | rt(144) |
45 | inflatekite(fl, n-1) |
46 | lt(18) |
47 | fd(l*d) |
48 | rt(162) |
49 | inflatekite(fl, n-1) |
50 | lt(36) |
51 | fd(l) |
52 | rt(180) |
53 | inflatedart(fl, n-1) |
54 | lt(36) |
55 | |
56 | def inflatedart(l, n): |
57 | if n == 0: |
58 | px, py = pos() |
59 | h, x, y = int(heading()), round(px,3), round(py,3) |
60 | tiledict[(h,x,y)] = False |
61 | return |
62 | fl = f * l |
63 | inflatekite(fl, n-1) |
64 | lt(36) |
65 | fd(l) |
66 | rt(180) |
67 | inflatedart(fl, n-1) |
68 | lt(54) |
69 | fd(l*d) |
70 | rt(126) |
71 | inflatedart(fl, n-1) |
72 | fd(l) |
73 | rt(144) |
74 | |
75 | def draw(l, n, th=2): |
76 | clear() |
77 | l = l * f**n |
78 | shapesize(l/100.0, l/100.0, th) |
79 | for k in tiledict: |
80 | h, x, y = k |
81 | setpos(x, y) |
82 | setheading(h) |
83 | if tiledict[k]: |
84 | shape("kite") |
85 | color("black", (0, 0.75, 0)) |
86 | else: |
87 | shape("dart") |
88 | color("black", (0.75, 0, 0)) |
89 | stamp() |
90 | |
91 | def sun(l, n): |
92 | for i in range(5): |
93 | inflatekite(l, n) |
94 | lt(72) |
95 | |
96 | def star(l,n): |
97 | for i in range(5): |
98 | inflatedart(l, n) |
99 | lt(72) |
100 | |
101 | def makeshapes(): |
102 | tracer(0) |
103 | begin_poly() |
104 | kite(100) |
105 | end_poly() |
106 | register_shape("kite", get_poly()) |
107 | begin_poly() |
108 | dart(100) |
109 | end_poly() |
110 | register_shape("dart", get_poly()) |
111 | tracer(1) |
112 | |
113 | def start(): |
114 | reset() |
115 | ht() |
116 | pu() |
117 | makeshapes() |
118 | resizemode("user") |
119 | |
120 | def test(l=200, n=4, fun=sun, startpos=(0,0), th=2): |
121 | global tiledict |
122 | goto(startpos) |
123 | setheading(0) |
124 | tiledict = {} |
125 | a = clock() |
126 | tracer(0) |
127 | fun(l, n) |
128 | b = clock() |
129 | draw(l, n, th) |
130 | tracer(1) |
131 | c = clock() |
132 | print("Calculation: %7.4f s" % (b - a)) |
133 | print("Drawing: %7.4f s" % (c - b)) |
134 | print("Together: %7.4f s" % (c - a)) |
135 | nk = len([x for x in tiledict if tiledict[x]]) |
136 | nd = len([x for x in tiledict if not tiledict[x]]) |
137 | print("%d kites and %d darts = %d pieces." % (nk, nd, nk+nd)) |
138 | |
139 | def demo(fun=sun): |
140 | start() |
141 | for i in range(8): |
142 | a = clock() |
143 | test(300, i, fun) |
144 | b = clock() |
145 | t = b - a |
146 | if t < 2: |
147 | sleep(2 - t) |
148 | |
149 | def main(): |
150 | #title("Penrose-tiling with kites and darts.") |
151 | mode("logo") |
152 | bgcolor(0.3, 0.3, 0) |
153 | demo(sun) |
154 | sleep(2) |
155 | demo(star) |
156 | pencolor("black") |
157 | goto(0,-200) |
158 | pencolor(0.7,0.7,1) |
159 | write("Please wait...", |
160 | align="center", font=('Arial Black', 36, 'bold')) |
161 | test(600, 8, startpos=(70, 117)) |
162 | return "Done" |
163 | |
164 | if __name__ == "__main__": |
165 | msg = main() |
166 | mainloop() |
167 |
和平
1 | # coding:utf-8 |
2 | |
3 | from turtle import * |
4 | |
5 | def main(): |
6 | peacecolors = ("red3", "orange", "yellow", |
7 | "seagreen4", "orchid4", |
8 | "royalblue1", "dodgerblue4") |
9 | |
10 | reset() |
11 | Screen() |
12 | up() |
13 | goto(-320,-195) |
14 | width(70) |
15 | |
16 | for pcolor in peacecolors: |
17 | color(pcolor) |
18 | down() |
19 | forward(640) |
20 | up() |
21 | backward(640) |
22 | left(90) |
23 | forward(66) |
24 | right(90) |
25 | |
26 | width(25) |
27 | color("white") |
28 | goto(0,-170) |
29 | down() |
30 | |
31 | circle(170) |
32 | left(90) |
33 | forward(340) |
34 | up() |
35 | left(180) |
36 | forward(170) |
37 | right(45) |
38 | down() |
39 | forward(170) |
40 | up() |
41 | backward(170) |
42 | left(90) |
43 | down() |
44 | forward(170) |
45 | up() |
46 | |
47 | goto(0,300) # vanish if hideturtle() is not available ;-) |
48 | return "Done!" |
49 | |
50 | if __name__ == "__main__": |
51 | main() |
52 | mainloop() |
53 |
鼠标追随
1 | # coding:utf-8 |
2 | |
3 | from turtle import * |
4 | |
5 | def switchupdown(x=0, y=0): |
6 | if pen()["pendown"]: |
7 | end_fill() |
8 | up() |
9 | else: |
10 | down() |
11 | begin_fill() |
12 | |
13 | def changecolor(x=0, y=0): |
14 | global colors |
15 | colors = colors[1:]+colors[:1] |
16 | color(colors[0]) |
17 | |
18 | def main(): |
19 | global colors |
20 | shape("circle") |
21 | resizemode("user") |
22 | shapesize(.5) |
23 | width(3) |
24 | colors=["red", "green", "blue", "yellow"] |
25 | color(colors[0]) |
26 | switchupdown() |
27 | onscreenclick(goto,1) |
28 | onscreenclick(changecolor,2) |
29 | onscreenclick(switchupdown,3) |
30 | return "EVENTLOOP" |
31 | |
32 | if __name__ == "__main__": |
33 | msg = main() |
34 | print(msg) |
35 | mainloop() |
36 |
nim
1 | # coding:utf-8 |
2 | |
3 | import turtle |
4 | import random |
5 | import time |
6 | |
7 | SCREENWIDTH = 640 |
8 | SCREENHEIGHT = 480 |
9 | |
10 | MINSTICKS = 7 |
11 | MAXSTICKS = 31 |
12 | |
13 | HUNIT = SCREENHEIGHT // 12 |
14 | WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2) |
15 | |
16 | SCOLOR = (63, 63, 31) |
17 | HCOLOR = (255, 204, 204) |
18 | COLOR = (204, 204, 255) |
19 | |
20 | def randomrow(): |
21 | return random.randint(MINSTICKS, MAXSTICKS) |
22 | |
23 | def computerzug(state): |
24 | xored = state[0] ^ state[1] ^ state[2] |
25 | if xored == 0: |
26 | return randommove(state) |
27 | for z in range(3): |
28 | s = state[z] ^ xored |
29 | if s <= state[z]: |
30 | move = (z, s) |
31 | return move |
32 | |
33 | def randommove(state): |
34 | m = max(state) |
35 | while True: |
36 | z = random.randint(0,2) |
37 | if state[z] > (m > 1): |
38 | break |
39 | rand = random.randint(m > 1, state[z]-1) |
40 | return z, rand |
41 | |
42 | |
43 | class NimModel(object): |
44 | def __init__(self, game): |
45 | self.game = game |
46 | |
47 | def setup(self): |
48 | if self.game.state not in [Nim.CREATED, Nim.OVER]: |
49 | return |
50 | self.sticks = [randomrow(), randomrow(), randomrow()] |
51 | self.player = 0 |
52 | self.winner = None |
53 | self.game.view.setup() |
54 | self.game.state = Nim.RUNNING |
55 | |
56 | def move(self, row, col): |
57 | maxspalte = self.sticks[row] |
58 | self.sticks[row] = col |
59 | self.game.view.notify_move(row, col, maxspalte, self.player) |
60 | if self.game_over(): |
61 | self.game.state = Nim.OVER |
62 | self.winner = self.player |
63 | self.game.view.notify_over() |
64 | elif self.player == 0: |
65 | self.player = 1 |
66 | row, col = computerzug(self.sticks) |
67 | self.move(row, col) |
68 | self.player = 0 |
69 | |
70 | def game_over(self): |
71 | return self.sticks == [0, 0, 0] |
72 | |
73 | def notify_move(self, row, col): |
74 | if self.sticks[row] <= col: |
75 | return |
76 | self.move(row, col) |
77 | |
78 | |
79 | class Stick(turtle.Turtle): |
80 | def __init__(self, row, col, game): |
81 | turtle.Turtle.__init__(self, visible=False) |
82 | self.row = row |
83 | self.col = col |
84 | self.game = game |
85 | x, y = self.coords(row, col) |
86 | self.shape("square") |
87 | self.shapesize(HUNIT/10.0, WUNIT/20.0) |
88 | self.speed(0) |
89 | self.pu() |
90 | self.goto(x,y) |
91 | self.color("white") |
92 | self.showturtle() |
93 | |
94 | def coords(self, row, col): |
95 | packet, remainder = divmod(col, 5) |
96 | x = (3 + 11 * packet + 2 * remainder) * WUNIT |
97 | y = (2 + 3 * row) * HUNIT |
98 | return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2 |
99 | |
100 | def makemove(self, x, y): |
101 | if self.game.state != Nim.RUNNING: |
102 | return |
103 | self.game.controller.notify_move(self.row, self.col) |
104 | |
105 | |
106 | class NimView(object): |
107 | def __init__(self, game): |
108 | self.game = game |
109 | self.screen = game.screen |
110 | self.model = game.model |
111 | self.screen.colormode(255) |
112 | self.screen.tracer(False) |
113 | self.screen.bgcolor((240, 240, 255)) |
114 | self.writer = turtle.Turtle(visible=False) |
115 | self.writer.pu() |
116 | self.writer.speed(0) |
117 | self.sticks = {} |
118 | for row in range(3): |
119 | for col in range(MAXSTICKS): |
120 | self.sticks[(row, col)] = Stick(row, col, game) |
121 | self.display("... a moment please ...") |
122 | self.screen.tracer(True) |
123 | |
124 | def display(self, msg1, msg2=None): |
125 | self.screen.tracer(False) |
126 | self.writer.clear() |
127 | if msg2 is not None: |
128 | self.writer.goto(0, - SCREENHEIGHT // 2 + 48) |
129 | self.writer.pencolor("red") |
130 | self.writer.write(msg2, align="center", font=("Courier",18,"bold")) |
131 | self.writer.goto(0, - SCREENHEIGHT // 2 + 20) |
132 | self.writer.pencolor("black") |
133 | self.writer.write(msg1, align="center", font=("Courier",14,"bold")) |
134 | self.screen.tracer(True) |
135 | |
136 | def setup(self): |
137 | self.screen.tracer(False) |
138 | for row in range(3): |
139 | for col in range(self.model.sticks[row]): |
140 | self.sticks[(row, col)].color(SCOLOR) |
141 | for row in range(3): |
142 | for col in range(self.model.sticks[row], MAXSTICKS): |
143 | self.sticks[(row, col)].color("white") |
144 | self.display("Your turn! Click leftmost stick to remove.") |
145 | self.screen.tracer(True) |
146 | |
147 | def notify_move(self, row, col, maxspalte, player): |
148 | if player == 0: |
149 | farbe = HCOLOR |
150 | for s in range(col, maxspalte): |
151 | self.sticks[(row, s)].color(farbe) |
152 | else: |
153 | self.display(" ... thinking ... ") |
154 | time.sleep(0.5) |
155 | self.display(" ... thinking ... aaah ...") |
156 | farbe = COLOR |
157 | for s in range(maxspalte-1, col-1, -1): |
158 | time.sleep(0.2) |
159 | self.sticks[(row, s)].color(farbe) |
160 | self.display("Your turn! Click leftmost stick to remove.") |
161 | |
162 | def notify_over(self): |
163 | if self.game.model.winner == 0: |
164 | msg2 = "Congrats. You're the winner!!!" |
165 | else: |
166 | msg2 = "Sorry, the computer is the winner." |
167 | self.display("To play again press space bar. To leave press ESC.", msg2) |
168 | |
169 | def clear(self): |
170 | if self.game.state == Nim.OVER: |
171 | self.screen.clear() |
172 | |
173 | |
174 | class NimController(object): |
175 | |
176 | def __init__(self, game): |
177 | self.game = game |
178 | self.sticks = game.view.sticks |
179 | self.BUSY = False |
180 | for stick in self.sticks.values(): |
181 | stick.onclick(stick.makemove) |
182 | self.game.screen.onkey(self.game.model.setup, "space") |
183 | self.game.screen.onkey(self.game.view.clear, "Escape") |
184 | self.game.view.display("Press space bar to start game") |
185 | self.game.screen.listen() |
186 | |
187 | def notify_move(self, row, col): |
188 | if self.BUSY: |
189 | return |
190 | self.BUSY = True |
191 | self.game.model.notify_move(row, col) |
192 | self.BUSY = False |
193 | |
194 | |
195 | class Nim(object): |
196 | CREATED = 0 |
197 | RUNNING = 1 |
198 | OVER = 2 |
199 | def __init__(self, screen): |
200 | self.state = Nim.CREATED |
201 | self.screen = screen |
202 | self.model = NimModel(self) |
203 | self.view = NimView(self) |
204 | self.controller = NimController(self) |
205 | |
206 | |
207 | def main(): |
208 | mainscreen = turtle.Screen() |
209 | mainscreen.mode("standard") |
210 | mainscreen.setup(SCREENWIDTH, SCREENHEIGHT) |
211 | nim = Nim(mainscreen) |
212 | return "EVENTLOOP" |
213 | |
214 | if __name__ == "__main__": |
215 | main() |
216 | turtle.mainloop() |
217 |
python turtle 例子 海归绘图的更多相关文章
- 从Scratch到Python——python turtle 一种比pygame更加简洁的实现
从Scratch到Python--python turtle 一种比pygame更加简洁的实现 现在很多学校都开设了Scratch课程,学生可以利用Scratch创作丰富的作品,然而Scratch之后 ...
- 这42个Python小例子,太走心
告别枯燥,60秒学会一个Python小例子.奔着此出发点,我在过去1个月,将平时经常使用的代码段换为小例子,分享出来后受到大家的喜欢. 一.基本操作 1 链式比较 i = 3print(1 < ...
- python+turtle 笔记
用Python+turtle绘制佩琪: from turtle import * def nose(x,y):#鼻子 penup()#提起笔 goto(x,y)#定位 pendown()#落笔,开始画 ...
- 让小乌龟可以唱歌——对Python turtle进行拓展
在Scratch中,小猫是可以唱歌的,而且Scratch的声音木块有着丰富的功能,在这方面Python turtle略有欠缺,今天我们就来完善一下. Python声音模块 Python处理声音的模块很 ...
- Note of Python Turtle
Note of Python Turtle Turtle 库函数是 Python语言中一个流行的绘图函数库.Turtle 意思是海龟,在Python中显示为一个小箭头,通过它的移动而留 ...
- Python turtle库详解
Python turtle库详解 Turtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x.纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在 ...
- Python turtle 模块可以编写游戏,是真的吗?
1. 前言 turtle (小海龟) 是 Python 内置的一个绘图模块,其实它不仅可以用来绘图,还可以制作简单的小游戏,甚至可以当成简易的 GUI 模块,编写简单的 GUI 程序. 本文使用 tu ...
- Python Turtle库绘制蟒蛇
使用Python Turtle库来绘制蟒蛇 import turtle引入了海龟绘图体系 使用setup函数,设定了一个宽650像素和高350像素的窗体,其位置左上角坐标是200,200 说明位置在距 ...
- Python turtle绘制阴阳太极图代码解析
本文详细分析如何使用Python turtle绘制阴阳太极图,先来分解这个图形,图片中有四种颜色,每条曲线上的箭头表示乌龟移动的方向,首先从中心画一个半圆(红线),以红线所示圆的直径作半径画一个校园, ...
随机推荐
- 理解web service 和 SOA
什么是SOA? SOA的全称为Service Oriented Architecture,即面向服务架构.这是一种架构理念.它的提出是在企业计算领域将耦合的系统划分为松耦合的无状态的服务.服务发布出来 ...
- 本机spark 消费kafka失败(无法连接)
本机spark 消费kafka失败(无法连接) 终端也不报错 就特么不消费: 但是用console的consumer 却可以 经过各种改版本 ,测试配置,最后发现 只要注释掉 kafka 配置se ...
- 解析Service之你需要了解的一些东东
何为Service Service,俗名服务.在Android系统中,Service与Activity就像一个妈生的,不仅长得像,而且行为(生命周期)也有一些类似.对于Activity来说大家肯定不会 ...
- msvcr110.dll丢失解决方案
http://www.microsoft.com/zh-CN/download/details.aspx?id=30679 打开之后,在“选择语言”里选择“简体中文”,然后点击右边的“下载”按钮.
- MutationObserver DOM变化的观察
简单的给MutationObserver做个测试及总结笔记. MutationObserver,window上的一个(构造)函数,可以通过其创建的观察者(观察对象)达到观察DOM的变化的效果. 可适用 ...
- CentOS 7通过RVM来安装指定版本的Ruby
RVM也就是Ruby Version Manager,Ruby版本管理器 1.安装依赖库: yum install gcc-c++ patch readline readline-devel zlib ...
- 解决webstorm本地IP访问页面出错的问题
想在手机端访问webstorm做出的页面,遇到了根据IP地址访问页面错误的问题,试了网上的方法:“设置webstorm可以被外部连接访问”,依旧不能解决 解决方法: 在webstorm下:ctrl+a ...
- Spring @ResponseStatus
@ResponseStatus这个注解确实是个令我头疼的注解. 先记录下@ResponseStatus注解的定义. 记录几个得到的信息:@ResponseStatus声明在方法.类上, Spring3 ...
- SpringMvc RequestMappingHandlerMapping
RequestMappingHandlerMapping是SpringMvc中一个比较核心的类,查看下它的类结构图: InitializingBean是个很神奇的接口,在Spring每个容器的bean ...
- 疯狂Java讲义PDF
java学习资料,仅供学习交流,自行取用↓ 链接:https://pan.baidu.com/s/1dF1wCST 密码:i75g