la3890(半平面交)
蓝书半平面交例题
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
const double eps=1e-;
int n;
struct vec{
double x,y;
vec(double x=,double y=):x(x),y(y){}
vec operator-(vec& a){
return vec(x-a.x,y-a.y);
}
vec operator+(vec&a){
return vec(x+a.x,y+a.y);
}
}po[maxn],v[maxn],v2[maxn],g[maxn];
vec operator*(vec a,double t){return vec(a.x*t,a.y*t);}
double cross(vec a,vec b){return a.x*b.y-b.x*a.y;}
struct lin{
vec p,v;
double ang;
lin(){}
lin(vec p,vec v):p(p),v(v){ang=atan2(v.y,v.x);}
bool operator<(const lin&a)const{
return ang<a.ang;
}
}ll[maxn],q[maxn];
bool onl(lin L,vec p){
return cross(L.v,p-L.p)>;
}
vec qj(lin a,lin b){
vec u=a.p-b.p;
double t=cross(b.v,u)/cross(a.v,b.v);
return a.v*t+a.p;
}
vec nor(vec a){
double len=sqrt(a.x*a.x+a.y*a.y);
return vec(-a.y/len,a.x/len);
}
int halfj(){
sort(ll,ll+n);
int head,tail;
q[head=tail=]=ll[];
for(int i=;i<n;++i){
while(head<tail&&!onl(ll[i],g[tail-]))tail--;
while(head<tail&&!onl(ll[i],g[head]))head++;
q[++tail]=ll[i];
if(fabs(cross(q[tail].v,q[tail-].v))<eps){
--tail;if(onl(q[tail],ll[i].p))q[tail]=ll[i];
}
if(head<tail)g[tail-]=qj(q[tail-],q[tail]);
}
while(head<tail&&!onl(q[head],g[tail-]))--tail;
if(tail-head<=)return ;
return ;
}
int main(){
while(scanf("%d",&n)==&&n){
int m,x,y;
for(int i=;i<n;++i){
scanf("%d%d",&x,&y);po[i]=vec(x,y);
}
for(int i=;i<n;++i){v[i]=po[(i+)%n]-po[i];v2[i]=nor(v[i]);}
double l=,r=,mid;
while(r-l>1e-){
mid=(l+r)/;
for(int i=;i<n;++i)ll[i]=lin(v2[i]*mid+po[i],v[i]);//这里必须先写乘法再写加法才能过编译,可能是我这种重定义的问题;
if(halfj())l=mid;else r=mid;
}
printf("%.6lf\n",l);
}
system("pause");
return ;
}
/*
4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0
*/
la3890(半平面交)的更多相关文章
- 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)
按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...
- 【BZOJ-2618】凸多边形 计算几何 + 半平面交 + 增量法 + 三角剖分
2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 959 Solved: 489[Submit][Status] ...
- 【CSU1812】三角形和矩形 【半平面交】
检验半平面交的板子. #include <stdio.h> #include <bits/stdc++.h> using namespace std; #define gg p ...
- 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea
题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...
- poj 3335(半平面交)
链接:http://poj.org/problem?id=3335 //大牛们常说的测模板题 ------------------------------------------------- ...
- poj3525Most Distant Point from the Sea(半平面交)
链接 求凸多边形内一点距离边最远. 做法:二分+半平面交判定. 二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核. 本想自己写一个向内推进..仔细一看发现自己的平面交模板上自带.. #in ...
- poj1474Video Surveillance(半平面交)
链接 半平面交的模板题,判断有没有核.: 注意一下最后的核可能为一条线,面积也是为0的,但却是有的. #include<iostream> #include <stdio.h> ...
- 半平面交模板(O(n*n)&& O(n*log(n))
摘自http://blog.csdn.net/accry/article/details/6070621 首先解决问题:什么是半平面? 顾名思义,半平面就是指平面的一半,我们知道,一条直线可以将平面分 ...
- POJ2451 Uyuw's Concert(半平面交)
题意就是给你很多个半平面,求半平面交出来的凸包的面积. 半平面交有O(n^2)的算法,就是每次用一个新的半平面去切已有的凸包,更新,这个写起来感觉也不是特别好写. 另外一个O(nlogn)的算法是将半 ...
随机推荐
- vue通过代理实现跨域
http://www.cnblogs.com/wangyongcun/p/7665687.html
- Vue 数据的双向绑定
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- js的面向对象
JavaScript不区分类和实例的概念,而是通过原型(prototype)来实现面向对象编程. 原型是指当我们想要创建xiaoming这个具体的学生时,我们并没有一个Student类型可用 var ...
- 5O - 产生冠军
有一群人,打乒乓球比赛,两两捉对撕杀,每两个人之间最多打一场比赛. 球赛的规则如下: 如果A打败了B,B又打败了C,而A与C之间没有进行过比赛,那么就认定,A一定能打败C. 如果A打败了B,B又打败了 ...
- poj 2828(线段树 逆向思考) 插队是不好的行为
http://poj.org/problem?id=2828 插队问题,n个人,下面n行每行a,b表示这个人插在第a个人的后面和这个人的编号为b,最后输出队伍的情况 涉及到节点的问题可以用到线段树,这 ...
- padding属性
p {padding:2cm 4cm 3cm 4cm;} 属性定义及使用说明 padding简写属性在一个声明中设置所有填充属性.该属性可以有1到4个值. 实例: 填充:10px 5px 15px 2 ...
- Eloquent Attach/Detach/Sync Fires Any Event
eloquent-attach-detach-sync-fires-any-event I have a laravel project, and I need to make some calcul ...
- Spring 系列教程之自定义标签的解析
Spring 系列教程之自定义标签的解析 在之前的章节中,我们提到了在 Spring 中存在默认标签与自定义标签两种,而在上一章节中我们分析了 Spring 中对默认标签的解析过程,相信大家一定已经有 ...
- 使用SpringMVC的@CrossOrigin注解解决跨域请求问题
跨域问题,通俗说就是用ajax请求其他站点的接口,浏览器默认是不允许的.同源策略(Same-orgin policy)限制了一个源(orgin)中加载脚本或脚本与来自其他源(orgin)中资源的交互方 ...
- Linux日志文件总管——logrotate
日志文件包含了关于系统中发生的事件的有用信息,在排障过程中或者系统性能分析时经常被用到.对于忙碌的服务器,日志文件大小会增长极快,服务器会很快消耗磁盘空间,这成了个问题.除此之外,处理一个单个的庞大日 ...