Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习训练数据的高层特征表示的网络,DBN是一种生成模型,可见变量  与  个隐层的联合分布:

这里 x = h0为RBM在第 k 层的隐层单元条件下的可见单元的条件分布, 是一个DBN顶部可见层与隐层的条件分布,如图下:

DBN的训练:

1. 首先充分训练第一个 RBM; 
2. 固定第一个 RBM 的权重和偏移量,然后使用其隐性神经元的状态,作为第二个 RBM 的输入向量; 
3. 充分训练第二个 RBM 后,将第二个 RBM 堆叠在第一个 RBM 的上方; 
4. 重复以上三个步骤任意多次; 
5. 如果训练集中的数据有标签,那么在顶层的 RBM 训练时,这个 RBM 的显层中除了显性神经元,还需要有代表分类标签的神经元,一起进行训练: 
a) 假设顶层 RBM 的显层有 500 个显性神经元,训练数据的分类一共分成了 10 类; 
b) 那么顶层 RBM 的显层有 510 个显性神经元,对每一训练训练数据,相应的标签神经元被打开设为 1,而其他的则被关闭设为 0。
6. 对于一个4层的DBN 被训练好后如下图:( 图中的绿色部分就是在最顶层 RBM 中参与训练的标签 )
 
DBN的fun-tuning,微调阶段:
生成模型使用 Contrastive Wake-Sleep 算法进行调优,其算法过程是: 
1. 除了顶层 RBM,其他层 RBM 的权重被分成向上的认知权重和向下的生成权重; 
2. Wake 阶段:认知过程,通过外界的特征和向上的权重 (认知权重) 产生每一层的抽象表示 (结点状态) ,并且使用梯度下降修改层间的下行权重 (生成权重) 。也就是“如果现实跟我想象的不一样,改变我的权重使得我想
象的东西就是这样的”。 
3. Sleep 阶段:生成过程,通过顶层表示 (醒时学得的概念) 和向下权重,生成底层的状态,同时修改层间向上的权重。也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概
念”。 
 
DBN的使用:
1. 使用随机隐性神经元状态值,在顶层 RBM 中进行足够多次的吉布斯抽样; 
2. 向下传播,得到每层的状态。 

CS229 6.15 Neurons Networks Deep Belief Networks的更多相关文章

  1. (六)6.15 Neurons Networks Deep Belief Networks

    Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习 ...

  2. 受限玻尔兹曼机(RBM, Restricted Boltzmann machines)和深度信念网络(DBN, Deep Belief Networks)

    受限玻尔兹曼机对于当今的非监督学习有一定的启发意义. 深度信念网络(DBN, Deep Belief Networks)于2006年由Geoffery Hinton提出.

  3. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  4. Deep Belief Network简介

    Deep Belief Network简介 1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: 理论上来说, 隐藏层越多, 模型的表达能力应该越强.但是, 当 ...

  5. Deep Belief Network简介——本质上是在做逐层无监督学习,每次学习一层网络结构再逐步加深网络

    from:http://www.cnblogs.com/kemaswill/p/3266026.html 1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: ...

  6. Reducing the Dimensionality of data with neural networks / A fast learing algorithm for deep belief net

    Deeplearning原文作者Hinton代码注解 Matlab示例代码为两部分,分别对应不同的论文: . Reducing the Dimensionality of data with neur ...

  7. 深度神经网络入门教程Deep Neural Networks: A Getting Started Tutorial

    Deep Neural Networks are the more computationally powerful cousins to regular neural networks. Learn ...

  8. Must Know Tips/Tricks in Deep Neural Networks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially C ...

  9. Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

    http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...

随机推荐

  1. LambdaAOP

    项目地址 :  https://github.com/kelin-xycs/LambdaAOP LambdaAOP 一个 用 C# 实现的 使用 Lambda 表达式 的 AOP 这是 一个 用 C# ...

  2. celery + redis quick start

    软件: redis server redis-server.exe 安装redis for python using pip 安装celery (redis)  pip install -U &quo ...

  3. apt-get update 与 apt-get upgrade 的区别

    总而言之,update是更新软件列表,upgrade是更新软件:所以,这两命令都是一块用,update后再upgrade. update 是更新 /etc/apt/sources.list 和 /et ...

  4. Centos6.8 Mysql5.6 安装配置教程(转)

    准备Mysql文件: 方式一:wget url(mysql下载地址); 方式二:从官网下载mysql,上传至centos(小编使用的Nodepad++的NppFTP具体做法请百度);   检查之前安装 ...

  5. Linux下Python与C++混合编程

    最近在做一个CUDA的项目,记录下学习心得. 系统 Linux --generic #-Ubuntu x86_64 GNU/Linux C++调用Python Python模块代码: #!/usr/b ...

  6. SparkStreaming整合kafka编程

    1.下载spark-streaming-kafka插件包 由于Linux集群环境我使用spark是spark-2.1.1-bin-hadoop2.7,kafka是kafka_2.11-0.8.2.1, ...

  7. piwik高负载加速之切换session存储位置

    默认情况下,piwik的session是存储于根目录下面的tmp/sessions/路径下面的.而官方文档里面说,如果由于本地硬盘的原因,这种设置可能会导致系统被变慢,这在高负载系统应用中可能是不可以 ...

  8. xe5 android 调用照相机获取拍的照片[转]

    本篇文章我们来看一下delphi xe5 在android程序里怎样启动照相机并获取所拍的照片,本代码取自xe自带打sample,路径为: C:\Users\Public\Documents\RAD ...

  9. Hiero的spreadsheet中添加tag属性列

    Hiero在对剪辑线上的item进行管理的时候,往往会添加能多tag,而在管 理面板spreadsheet中却无法对tag进行查询,这是一件很麻烦的事,Hiero Development Guide中 ...

  10. 两招解决异常_Cannot find any information on property 'XXX' in a bean of type 'XXX'的问题

    第一招 在进行Java Web项目开发的时候,我碰到过下面这个异常: Cannot find any information on property 'XXX' in a bean of type ' ...