《一出好戏》讲述人性,使用Python抓取猫眼近10万条评论并分析,一起揭秘“这出好戏”到底如何?

黄渤首次导演的电影《一出好戏》自8月10日在全国上映,至今已有10天,其主演阵容强大,相信许多观众也都是冲着明星们去的。
目前《一出好戏》在猫眼上已经获得近60万个评价,评分为8.2分,票房已破10亿。

我们将使用Python抓取猫眼近10万条评论数据,并对获取到的数据进行分析,看看观众对这部电影的评价究竟如何?

整个数据分析的过程分为四步:

  1. 获取数据
  2. 处理数据
  3. 存储数据
  4. 数据可视化

一、获取数据

1. 简介

​ 本次获取的是猫眼APP的评论数据,如图所示:

通过分析发现猫眼APP的评论数据接口为:

http://m.maoyan.com/mmdb/comments/movie/1200486.json?_v_=yes&offset=0&startTime=2018-08-18%2022%3A25%3A03

​ 通过对评论数据进行分析,得到如下信息:

  • 返回的是json格式数据

  • 1200486表示电影的专属id;offset表示偏移量;startTime表示获取评论的起始时间,从该时间向前取数据,即获取最新的评论

  • cmts表示评论,每次获取15条,offset偏移量是指每次获取评论时的起始索引,向后取15条

  • hcmts表示热门评论前10条

  • total表示总评论数

2. 代码实现

​ 这里先定义一个函数,用来根据指定url获取数据,且只能获取到指定的日期向前获取到15条评论数据

# coding=utf-8
__author__ = '汤小洋' from urllib import request
import json
import time
from datetime import datetime
from datetime import timedelta # 获取数据,根据url获取
def get_data(url):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36'
}
req = request.Request(url, headers=headers)
response = request.urlopen(req)
if response.getcode() == 200:
return response.read()
return None if __name__ == '__main__':
html = get_data('http://m.maoyan.com/mmdb/comments/movie/1200486.json?_v_=yes&offset=0&startTime=2018-07-28%2022%3A25%3A03')
print(html)

二、处理数据

对获取的数据进行处理,转换为json

# 处理数据
def parse_data(html):
data = json.loads(html)['cmts'] # 将str转换为json
comments = []
for item in data:
comment = {
'id': item['id'],
'nickName': item['nickName'],
'cityName': item['cityName'] if 'cityName' in item else '', # 处理cityName不存在的情况
'content': item['content'].replace('\n', ' ', 10), # 处理评论内容换行的情况
'score': item['score'],
'startTime': item['startTime']
}
comments.append(comment)
return comments if __name__ == '__main__':
html = get_data('http://m.maoyan.com/mmdb/comments/movie/1200486.json?_v_=yes&offset=0&startTime=2018-07-28%2022%3A25%3A03')
comments = parse_data(html)
print(comments)

三、存储数据

​ 为了能够获取到所有评论数据,方法是:从当前时间开始,向前获取数据,根据url每次获取15条,然后得到末尾评论的时间,从该时间继续向前获取数据,直到影片上映日期(2018-08-10)为止,获取这之间的所有数据。

# 存储数据,存储到文本文件
def save_to_txt():
start_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 获取当前时间,从当前时间向前获取
end_time = '2018-08-10 00:00:00'
while start_time > end_time:
url = 'http://m.maoyan.com/mmdb/comments/movie/1203084.json?_v_=yes&offset=0&startTime=' + start_time.replace(' ', '%20')
html = None
'''
问题:当请求过于频繁时,服务器会拒绝连接,实际上是服务器的反爬虫策略
解决:1.在每个请求间增加延时0.1秒,尽量减少请求被拒绝
2.如果被拒绝,则0.5秒后重试
'''
try:
html = get_data(url)
except Exception as e:
time.sleep(0.5)
html = get_data(url)
else:
time.sleep(0.1) comments = parse_data(html)
print(comments)
start_time = comments[14]['startTime'] # 获得末尾评论的时间
start_time = datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + timedelta(seconds=-1) # 转换为datetime类型,减1秒,避免获取到重复数据
start_time = datetime.strftime(start_time, '%Y-%m-%d %H:%M:%S') # 转换为str for item in comments:
with open('comments.txt', 'a', encoding='utf-8') as f:
f.write(str(item['id'])+','+item['nickName'] + ',' + item['cityName'] + ',' + item['content'] + ',' + str(item['score'])+ ',' + item['startTime'] + '\n') if __name__ == '__main__':
# html = get_data('http://m.maoyan.com/mmdb/comments/movie/1200486.json?_v_=yes&offset=0&startTime=2018-07-28%2022%3A25%3A03')
# comments = parse_data(html)
# print(comments)
save_to_txt()

​ 有两点需要说明:

  1. 服务器一般都有反爬虫策略,当请求过于频繁时,服务器会拒绝部分连接,我这里是通过增加每个请求间延时来解决,只是一种简单的解决方案,还望各位看客理解包涵
  2. 根据数据量的多少,抓取数据所需时间会有所不同,我抓取的是2018-8-19到2018-8-10(上映当天)之间的数据,大概花了2个小时,共抓取约9.2万条评论数据

四、数据可视化

​ 这里使用的是pyecharts,pyecharts是一个用于生成Echarts图表的类库,便于在Python中根据数据生成可视化的图表。

​ Echarts是百度开源的一个数据可视化JS库,主要用于数据可视化。

​ 参考:http://pyecharts.org/

# 安装pyecharts
pip install pyecharts

​ pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。

# 安装地图文件包
pip install echarts-china-provinces-pypkg # 中国省、市、县、区地图
pip install echarts-china-cities-pypkg
pip install echarts-china-counties-pypkg
pip install echarts-china-misc-pypkg
pip install echarts-countries-pypkg # 全球国家地图
pip install echarts-united-kingdom-pypkg

1. 粉丝位置分布

​ 代码实现

# coding=utf-8
__author__ = '汤小洋' # 导入Style类,用于定义样式风格
from pyecharts import Style
# 导入Geo组件,用于生成地理坐标类图
from pyecharts import Geo
import json
# 导入Geo组件,用于生成柱状图
from pyecharts import Bar
# 导入Counter类,用于统计值出现的次数
from collections import Counter # 数据可视化
def render():
# 获取评论中所有城市
cities = []
with open('comments.txt', mode='r', encoding='utf-8') as f:
rows = f.readlines()
for row in rows:
city = row.split(',')[2]
if city != '': # 去掉城市名为空的值
cities.append(city) # 对城市数据和坐标文件中的地名进行处理
handle(cities) # 统计每个城市出现的次数
# data = []
# for city in set(cities):
# data.append((city, cities.count(city)))
data = Counter(cities).most_common() # 使用Counter类统计出现的次数,并转换为元组列表
# print(data) # 定义样式
style = Style(
title_color='#fff',
title_pos='center',
width=1200,
height=600,
background_color='#404a59'
) # 根据城市数据生成地理坐标图
geo = Geo('《一出好戏》粉丝位置分布', '数据来源:猫眼-汤小洋采集', **style.init_style)
attr, value = geo.cast(data)
geo.add('', attr, value, visual_range=[0, 3500],
visual_text_color='#fff', symbol_size=15,
is_visualmap=True, is_piecewise=True, visual_split_number=10)
geo.render('粉丝位置分布-地理坐标图.html') # 根据城市数据生成柱状图
data_top20 = Counter(cities).most_common(20) # 返回出现次数最多的20条
bar = Bar('《一出好戏》粉丝来源排行TOP20', '数据来源:猫眼-汤小洋采集', title_pos='center', width=1200, height=600)
attr, value = bar.cast(data_top20)
bar.add('', attr, value, is_visualmap=True, visual_range=[0, 3500], visual_text_color='#fff', is_more_utils=True,
is_label_show=True)
bar.render('粉丝来源排行-柱状图.html')

​ 出现的问题:

  • 报错:ValueError: No coordinate is specified for xxx(地名)

  • 原因:pyecharts的坐标文件中没有该地名,实际上是名称不一致导致的,如数据中地名为'达州',而坐标文件中为'达州市'

    坐标文件所在路径:项目/venv/lib/python3.6/site-packages/pyecharts/datasets/city_coordinates.json

  • 解决:修改坐标文件,在原位置下复制个同样的,然后修改下地名
{
"达州市": [
107.5,
31.22
],
"达州": [
107.5,
31.22
],
}

​ 不过由于要修改的地名太多,上面的方法实在是麻烦,所以我定义了一个函数,用来处理地名数据找不到的问题

# 处理地名数据,解决坐标文件中找不到地名的问题
def handle(cities):
# print(len(cities), len(set(cities))) # 获取坐标文件中所有地名
data = None
with open(
'/Users/wangbo/PycharmProjects/python-spider/venv/lib/python3.6/site-packages/pyecharts/datasets/city_coordinates.json',
mode='r', encoding='utf-8') as f:
data = json.loads(f.read()) # 将str转换为json # 循环判断处理
data_new = data.copy() # 拷贝所有地名数据
for city in set(cities): # 使用set去重
# 处理地名为空的数据
if city == '':
while city in cities:
cities.remove(city)
count = 0
for k in data.keys():
count += 1
if k == city:
break
if k.startswith(city): # 处理简写的地名,如 达州市 简写为 达州
# print(k, city)
data_new[city] = data[k]
break
if k.startswith(city[0:-1]) and len(city) >= 3: # 处理行政变更的地名,如县改区 或 县改市等
data_new[city] = data[k]
break
# 处理不存在的地名
if count == len(data):
while city in cities:
cities.remove(city) # print(len(data), len(data_new)) # 写入覆盖坐标文件
with open(
'/Users/wangbo/PycharmProjects/python-spider/venv/lib/python3.6/site-packages/pyecharts/datasets/city_coordinates.json',
mode='w', encoding='utf-8') as f:
f.write(json.dumps(data_new, ensure_ascii=False)) # 将json转换为str

可视化结果:

粉丝人群主要集中在沿海一带

从上图可以看出,《一出好戏》的观影人群主要集中在沿海一带,这些地方经济相对发达,城市人口基数庞大,极多的荧幕数量和座位、极高密度的排片场次,让观众便捷观影,活跃的观众评论也多,自然也就成为票房的主要贡献者。

粉丝来源排名前20的城市依次为:北京、深圳、上海、成都、武汉、广州、西安、郑州、重庆、南京、天津、沈阳、长沙、东莞、哈尔滨、青岛、杭州、合肥、大连、苏州

电影消费是城市消费的一部分,从某种角度来看,可以作为考察一个城市购买力的指标。这些城市在近年的GDP排行中大都居上游,消费水平较高。

2. 词云图

​ jieba是一个基于Python的分词库,完美支持中文分词,功能强大

pip install jieba

​ Matplotlib是一个Python的2D绘图库,能够生成高质量的图形,可以快速生成绘图、直方图、功率谱、柱状图、误差图、散点图等

pip install matplotlib

​ wordcloud是一个基于Python的词云生成类库,可以生成词云图

pip install wordcloud

​ 代码实现:

# coding=utf-8
__author__ = '汤小洋' # 导入jieba模块,用于中文分词
import jieba
# 导入matplotlib,用于生成2D图形
import matplotlib.pyplot as plt
# 导入wordcount,用于制作词云图
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator # 获取所有评论
comments = []
with open('comments.txt', mode='r', encoding='utf-8') as f:
rows = f.readlines()
for row in rows:
comment = row.split(',')[3]
if comment != '':
comments.append(comment) # 设置分词
comment_after_split = jieba.cut(str(comments), cut_all=False) # 非全模式分词,cut_all=false
words = ' '.join(comment_after_split) # 以空格进行拼接
# print(words) # 设置屏蔽词
stopwords = STOPWORDS.copy()
stopwords.add('电影')
stopwords.add('一部')
stopwords.add('一个')
stopwords.add('没有')
stopwords.add('什么')
stopwords.add('有点')
stopwords.add('这部')
stopwords.add('这个')
stopwords.add('不是')
stopwords.add('真的')
stopwords.add('感觉')
stopwords.add('觉得')
stopwords.add('还是')
stopwords.add('但是')
stopwords.add('就是')
stopwords.add('一出')
stopwords.add('好戏') # 导入背景图
bg_image = plt.imread('bg.jpg') # 设置词云参数,参数分别表示:画布宽高、背景颜色、背景图形状、字体、屏蔽词、最大词的字体大小
wc = WordCloud(width=1024, height=768, background_color='white', mask=bg_image, font_path='STKAITI.TTF',
stopwords=stopwords, max_font_size=400, random_state=50)
# 将分词后数据传入云图
wc.generate_from_text(words)
plt.imshow(wc)
plt.axis('off') # 不显示坐标轴
plt.show()
# 保存结果到本地
wc.to_file('词云图.jpg')

可视化结果:

总体评价很不错

​ 对评论数据进行分词后制作如下词云图:

​ 从词云图中可以看到:

  • 评论中多次出现“可以”、“好看”、“不错”等热词,说明观众对《一出好戏》的总体评价还是很不错的
  • 同时对该影片中“张艺兴”的“演技”也给予了很大的认可,我本人今天在观看后也有同感,让我们看到了不一样的张艺兴,实力演员
  • 对于初次“导演”电影的“黄渤”,能拍出这样的影片,粉丝们也是比较肯定的,同时其本身就是票房的保障
  • 至于剧情方面,“现实”、“喜剧”、“搞笑”、“故事”等词语,能看出这是一部反映现实的故事片,同时也兼具喜剧搞笑
  • 对于评论中出现的“一般”、“失望”等,这些粉丝或许是和我一样,本以为这是一部爆笑喜剧片,笑点应该会很多(毕竟在我们心中,黄渤、王宝强等就是笑星),没想到笑点并不很多,至少与期待的有差距,导致心里有落差的原因吧^_^

3. 评分星级

​ 代码实现:

# coding=utf-8
__author__ = '汤小洋' # 导入Pie组件,用于生成饼图
from pyecharts import Pie # 获取评论中所有评分
rates = []
with open('comments.txt', mode='r', encoding='utf-8') as f:
rows = f.readlines()
for row in rows:
rates.append(row.split(',')[4])
# print(rates) # 定义星级,并统计各星级评分数量
attr = ['五星', '四星', '三星', '二星', '一星']
value = [
rates.count('5') + rates.count('4.5'),
rates.count('4') + rates.count('3.5'),
rates.count('3') + rates.count('2.5'),
rates.count('2') + rates.count('1.5'),
rates.count('1') + rates.count('0.5')
]
# print(value) pie = Pie('《一出好戏》评分星级比例', title_pos='center', width=900)
pie.add('7-17', attr, value, center=[75, 50], is_random=True,
radius=[30, 75], rosetype='area',
is_legend_show=False, is_label_show=True)
pie.render('评分.html')

可视化结果:

四、五星级影评合计高达83%

​ 从图中可以看出,五星比例接近62%,四星比例为21%,两者合计高达83%,可见口碑还是相当不错的,一星占比不足6%

​ 《一出好戏》作为黄渤第一次执导的作品,在拍摄过程中导演渤哥对自己的要求也是很严格的,所以有这样的成绩,也是理所当然。

使用Python抓取猫眼近10万条评论并分析的更多相关文章

  1. python抓取猫眼电影列表

    抓取地址:http://maoyan.com/board/4 分析url分页规则:http://maoyan.com/board/4?offset=0 其中offset参数值为0到90 用到的库: P ...

  2. Python抓取豆瓣《白夜追凶》的评论并且分词

    最近网剧<白夜追凶>在很多朋友的推荐下,开启了追剧模式,自从琅琊榜过后没有看过国产剧了,此剧确实是良心剧呀!一直追下去,十一最后两天闲来无事就抓取豆瓣的评论看一下 相关代码提交到githu ...

  3. python抓取NBA现役球员基本信息数据并进行分析

    链接:http://china.nba.com/playerindex/ 所需获取JSON数据页面链接:http://china.nba.com/static/data/league/playerli ...

  4. Python爬虫之requests+正则表达式抓取猫眼电影top100以及瓜子二手网二手车信息(四)

    requests+正则表达式抓取猫眼电影top100 一.首先我们先分析下网页结构 可以看到第一页的URL和第二页的URL的区别在于offset的值,第一页为0,第二页为10,以此类推. 二.< ...

  5. python+requests+re匹配抓取猫眼上映电影信息

    python+requests抓取猫眼中上映电影,re正则匹配获取对应电影的排名,图片地址,片名,主演及上映时间和评分 import requests import re, json def get_ ...

  6. Python爬虫【三】利用requests和正则抓取猫眼电影网上排名前100的电影

    #利用requests和正则抓取猫眼电影网上排名前100的电影 import requests from requests.exceptions import RequestException imp ...

  7. Python Spider 抓取猫眼电影TOP100

    """ 抓取猫眼电影TOP100 """ import re import time import requests from bs4 im ...

  8. 使用python抓取并分析数据—链家网(requests+BeautifulSoup)(转)

    本篇文章是使用python抓取数据的第一篇,使用requests+BeautifulSoup的方法对页面进行抓取和数据提取.通过使用requests库对链家网二手房列表页进行抓取,通过Beautifu ...

  9. 使用 Python 抓取欧洲足球联赛数据

    Web Scraping在大数据时代,一切都要用数据来说话,大数据处理的过程一般需要经过以下的几个步骤    数据的采集和获取    数据的清洗,抽取,变形和装载    数据的分析,探索和预测    ...

随机推荐

  1. restframwork之序列化

    一 restframwork为我们提供了一个快速实例,方便我们快速理解restframwork的序列化的原理. 快速实例化 Django REST framework API 指南 二 restfra ...

  2. centos7 安装 nvm

    cd 到 /usr/local下创建nvm文件夹,并进入nvm目录, 执行命令: wget -qO- https://raw.githubusercontent.com/creationix/nvm/ ...

  3. retry之python重试机制

    安装 pip install retry Retry装饰器 retry(exceptions=Exception, tries=-1, delay=0, max_delay=None, backoff ...

  4. layerUi与AJAX的一种思路

    javascript:function rep(id) { layer.confirm("确定要拒绝此认证吗?", { btn: ["确定", "取消 ...

  5. IntelliJ Idea设置Could not autowire. No beans of 'xxx' type found

    1.问题描述 在Idea的spring工程里,经常会遇到Could not autowire. No beans of ‘xxxx’ type found的错误提示.但程序的编译和运行都是没有问题的, ...

  6. gojs 破解版

    a.Hv=d[w.Kg("7eba17a4ca3b1a8346")][w.Kg("78a118b7")](d,w.pm,4,4);a.Hv= function( ...

  7. Javascript 中 null和undefined的区别

    null表示"没有对象",即该处不应该有值.典型用法是: (1) 作为函数的参数,表示该函数的参数不是对象. (2) 作为对象原型链的终点. Object.getPrototype ...

  8. 1. apache如何启动

    进入apache安装目录/bin/底下,用命令:./apachectl start 启动

  9. Flex学习笔记-自定义菜单的显示细节

    icon <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx=&qu ...

  10. <基础> PHP 进阶之 抽象类(abstract)、接口(interface)、Trait(特征)

    抽象类 PHP 5 支持抽象类和抽象方法.定义为抽象的类不能被实例化. 抽象方法只能在抽象类中,抽象类中可以包含非抽象方法 被定义为抽象的方法只是声明了其调用方式(参数),不能定义其具体的功能实现 继 ...