2019.01.01洛谷 P4725/P4726 多项式对数/指数函数(牛顿迭代)
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
typedef long long ll;
const int mod=998244353;
int n,lim,tim;
vector<int>A,B,pos,Inv;
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(const int&a,const int&b){return a>=b?a-b:a-b+mod;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)ret=mul(ret,a);return ret;}
inline void ntt(vector<int>&a,int type){
for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
for(ri mid=1,wn,mult=(mod-1)/2,typ=type==1?3:(mod+1)/3;mid<lim;mid<<=1,mult>>=1){
wn=ksm(typ,mult);
for(ri j=0,len=mid<<1;j<lim;j+=len)for(ri w=1,a0,a1,k=0;k<mid;++k,w=mul(w,wn)){
a0=a[j+k],a1=mul(w,a[j+k+mid]);
a[j+k]=add(a0,a1),a[j+k+mid]=dec(a0,a1);
}
}
if(type==-1)for(ri i=0,inv=ksm(lim,mod-2);i<lim;++i)a[i]=mul(a[i],inv);
}
inline void init(int up){
lim=1,tim=0;
while(lim<=up)lim<<=1,++tim;
pos.resize(lim-1),pos[0]=0;
for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
struct poly{
vector<int>a;
inline int deg()const{return a.size()-1;}
poly(int k,int x=0){a.resize(k+1),a[k]=x;}
inline int&operator[](const int&k){return a[k];}
inline const int&operator[](const int&k)const{return a[k];}
inline poly extend(const int&k){poly ret=*this;return ret.a.resize(k+1),ret;}
friend inline poly operator+(const poly&a,const poly&b){
poly ret(max(a.deg(),b.deg()));
for(ri i=0;i<=a.deg();++i)ret[i]=add(ret[i],a[i]);
for(ri i=0;i<=b.deg();++i)ret[i]=add(ret[i],b[i]);
return ret;
}
friend inline poly operator-(const poly&a,const poly&b){
poly ret(max(a.deg(),b.deg()));
for(ri i=0;i<=a.deg();++i)ret[i]=add(ret[i],a[i]);
for(ri i=0;i<=b.deg();++i)ret[i]=dec(ret[i],b[i]);
return ret;
}
friend inline poly operator*(const int&a,const poly&b){
poly ret(b.deg());
for(ri i=0;i<=b.deg();++i)ret[i]=mul(a,b[i]);
return ret;
}
friend inline poly operator*(const poly&a,const poly&b){
int n=a.deg(),m=b.deg();
init(n+m),A.resize(lim),B.resize(lim);
poly ret(lim-1);
for(ri i=0;i<=n;++i)A[i]=a[i];
for(ri i=0;i<=m;++i)B[i]=b[i];
for(ri i=n+1;i<lim;++i)A[i]=0;
for(ri i=m+1;i<lim;++i)B[i]=0;
ntt(A,1),ntt(B,1);
for(ri i=0;i<lim;++i)A[i]=mul(A[i],B[i]);
return ntt(A,-1),ret.a=A,ret;
}
inline poly poly_inv(poly a,const int&k){
a=a.extend(k);
if(k==1)return poly(0,ksm(a[0],mod-2));
poly f0=poly_inv(a,(k+1)>>1);
return (2*f0-((f0*f0.extend(k))*a).extend(k)).extend(k);
}
inline poly poly_direv(poly a){
poly ret(a.deg()-1);
for(ri i=0;i<=ret.deg();++i)ret[i]=mul(a[i+1],i+1);
return ret;
}
inline poly poly_inter(poly a){
poly ret(a.deg()+1);
for(ri i=1;i<=ret.deg();++i)ret[i]=mul(Inv[i],a[i-1]);
return ret;
}
inline poly poly_ln(poly a,int len){
poly ret=a.poly_direv(a);
return ret=ret*a.poly_inv(a,len),ret.poly_inter(ret);
}
inline poly poly_exp(poly a,const int&k){
a=a.extend(k);
if(k==1)return poly(0,1);
poly f0=poly_exp(a,(k+1)>>1).extend(k);
poly delt=a-poly_ln(f0,k);
++delt[0];
return (f0*delt).extend(k);
}
};
int main(){
n=read()-1;
poly ans(n);
for(ri i=0;i<=n;++i)ans[i]=read();
int len=1;
while(len<=n*2)len<<=1;
Inv.resize(len),Inv[1]=1;
for(ri i=2;i<len;++i)Inv[i]=mul(Inv[mod%i],mod-mod/i);
ans=ans.poly_exp(ans,len);
for(ri i=0;i<=n;++i)cout<<ans[i]<<' ';
return 0;
}
2019.01.01洛谷 P4725/P4726 多项式对数/指数函数(牛顿迭代)的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- 【洛谷】P1067 多项式输出
原题链接:P1067 多项式输出 题目分析:学长推荐的OJ网站 --洛谷,发现挺好用的还可以下载提交出错的数据. 废话就不多说了,这道题属于基础题.提交出错主要是因为一些小细节不到位,这里就不一一赘述 ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- 2019.01.02 洛谷P4512 【模板】多项式除法
传送门 解析 代码: #include<bits/stdc++.h> #define ri register int using namespace std; typedef long l ...
- 2019.01.21 洛谷P3919 【模板】可持久化数组(主席树)
传送门 题意简述:支持在某个历史版本上修改某一个位置上的值,访问某个历史版本上的某一位置的值. 思路: 用主席树直接维护历史版本即可. 代码: #include<bits/stdc++.h> ...
- 2019.01.19 洛谷P2787 语文1(chin1)- 理理思维(ODT)
传送门 ODTODTODT水题. 题意:有一个字母序列,支持区间赋值,查询区间某个字母的数量,区间按字母序排序. 思路: 可以开262626棵线段树搞过去,然而也可以用ODTODTODT秒掉. 如果用 ...
- 2019.01.04 洛谷P4719 【模板】动态dp(链分治+ddp)
传送门 ddpddpddp模板题. 题意简述:给你一棵树,支持修改一个点,维护整棵树的最大带权独立集. 思路: 我们考虑如果没有修改怎么做. 貌似就是一个sbsbsb树形dpdpdp,fi,0f_{i ...
随机推荐
- pandas中series和dataframe之间的区别
series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...
- f5健康检查
1.1)一般pool的健康检查 Pool member 2)检查member的多个端口,若有任意一个端口down,则切换到另一member Pool的健康检查不填,pool member的健康检查填多 ...
- ApplicationContextAware的使用
一.这个接口有什么用? 当一个类实现了这个接口(ApplicationContextAware)之后,这个类就可以方便获得ApplicationContext中的所有bean.换句话说,就是这个类可以 ...
- Bundle Adjustment---即最小化重投影误差(高翔slam---第七讲)
一.历史由来 Adjustment computation最早是由geodesy的人搞出来的.19世纪中期的时候,geodetics的学者就开始研究large scale triangulations ...
- go语言template包中模板语法总结
package main; import ( "html/template" "os" "fmt" ) type Person struct ...
- @JsonView 简单介绍[z]
@JsonView是jackson json中的一个注解,Spring webmvc也支持这个注解. 这个注解的作用就是控制输入输出后的json. 假设我们有一个用户类,其中包含用户名和密码,一般情况 ...
- sql:inner join,left join,right join,full join用法及区别
join的语法: select [字段] from [表名1] inner/left/right/full join [表名2] on [表名1.字段1] <关系运算符> [表名2.字段2 ...
- js数据类型和变量
Number JavaScript不区分整数和浮点数,统一用Number表示: 123 0.345 -99 NaN 当无法计算结果时用NaN表示 Infinity 表示无限大,当数值超过js的Numb ...
- OpenGL3D图形、旋转、纹理、键盘移动、光照、滤波、透明(完整) 转自http://www.cnblogs.com/tiandsp/archive/2012/01/23/2329049.html
#include <windows.h> // Windows的头文件 #include <stdio.h> #include <gl\gl.h> // OpenG ...
- 应用内直接跳转到Appstore
iOS开发中,应用内直接跳转到Appstore .进入appstore中指定的应用 NSString *str = [NSString stringWithFormat: @"itms:// ...