Luogu P3227 [HNOI2013]切糕
%%ZZKdalao上课讲的题目,才知道网络流的这种玄学建模
我们先想一想,如果没有D的限制,那么想当于再每一根纵轴上选一个权值最小的点再加起来
我们对应在网络流上就是每一根纵轴上的点向它下方的点用权值当边值进行连边,然后要割掉一些边,代价最小就是求最小割
然后我们考虑限制,就是如果割了某一根数轴上高度为x的点,那么所有与它相邻的纵轴都只能割高度为[x-d,x+d]的点
这个时候我们就要知道一个常用技巧:在求最小割时,我们可以把那些无法割去的边边权设为INF
因此我们在建边时,由纵轴上一度为x的点高向与它相邻的纵轴上高度为x-d的点连边,边权为INF
为什么呢,我们结合一个图来看一下:
其中红色的边表示边权为INF,无法割去
当我们选择割掉5-7的这条边时,会发现2-4这条边无法割去。因为就算割去了也可以从5-4这条边过去。这就达到了我们的目的
因此我们这样建边之后跑最大流即可
CODE
#include<cstdio>
#include<cstring>
using namespace std;
const int N=45,INF=1e9,fx[4]={0,1,0,-1},fy[4]={1,0,-1,0};
struct edge
{
int to,next,c;
}e[N*N*N*20];
int v[N][N][N],head[N*N*N],dep[N*N*N],Q[N*N*N],p,q,r,d,s,t,cnt=-1;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline int get_num(int x,int y,int z)
{
return x*p*q+y*q+z;
}
inline void add(int x,int y,int z)
{
e[++cnt].to=y; e[cnt].c=z; e[cnt].next=head[x]; head[x]=cnt;
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline bool BFS(void)
{
memset(dep,0,sizeof(dep));
dep[s]=1; Q[1]=s;
int H=0,T=1;
while (H<T)
{
int now=Q[++H];
for (register int i=head[now];i!=-1;i=e[i].next)
if (!dep[e[i].to]&&e[i].c)
{
dep[e[i].to]=dep[now]+1;
Q[++T]=e[i].to;
}
}
return dep[t];
}
inline int DFS(int now,int dist)
{
if (now==t) return dist;
int res=0;
for (register int i=head[now];i!=-1&&dist;i=e[i].next)
if (dep[e[i].to]==dep[now]+1&&e[i].c)
{
int dis=DFS(e[i].to,min(dist,e[i].c));
dist-=dis; res+=dis;
e[i].c-=dis; e[i^1].c+=dis;
}
if (!res) dep[now]=0;
return res;
}
inline int Dinic(void)
{
int res=0;
while (BFS()) res+=DFS(s,INF);
return res;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k;
memset(e,-1,sizeof(e));
memset(head,-1,sizeof(head));
read(p); read(q); read(r); read(d); s=0; t=get_num(r,p,q)+1;
for (i=1;i<=r;++i)
for (j=1;j<=p;++j)
for (k=1;k<=q;++k)
read(v[i][j][k]);
for (i=1;i<=p;++i)
for (j=1;j<=q;++j)
add(s,get_num(0,i,j),INF),add(get_num(0,i,j),s,0),add(get_num(r,i,j),t,INF),add(t,get_num(r,i,j),0);
for (i=1;i<=r;++i)
for (j=1;j<=p;++j)
for (k=1;k<=q;++k)
add(get_num(i-1,j,k),get_num(i,j,k),v[i][j][k]),add(get_num(i,j,k),get_num(i-1,j,k),0);
for (i=d;i<=r;++i)
for (j=1;j<=p;++j)
for (k=1;k<=q;++k)
for (register int kind=0;kind<4;++kind)
{
int x=j+fx[kind],y=k+fy[kind];
if (x>0&&x<=p&&y>0&&y<=q)
add(get_num(i,j,k),get_num(i-d,x,y),INF),add(get_num(i-d,x,y),get_num(i,j,k),0);
}
printf("%d",Dinic());
return 0;
}
Luogu P3227 [HNOI2013]切糕的更多相关文章
- Luogu P3227 [HNOI2013]切糕 最小割
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...
- P3227 [HNOI2013]切糕
题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你能帮她找出最好的切割方案 ...
- [洛谷P3227][HNOI2013]切糕
题目大意:有一个$n\times m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价.$n,m,k,D\leqsla ...
- 洛谷 P3227 [HNOI2013]切糕(最小割)
题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y' ...
- 洛谷$P3227\ [HNOI2013]$切糕 网络流
正解:网络流 解题报告: 传送门! 日常看不懂题系列,,,$QAQ$ 所以先放下题目大意趴$QwQ$,就说有个$p\cdot q$的矩阵,每个位置可以填一个$[1,R]$范围内的整数$a_{i,j}$ ...
- bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...
- BZOJ 3144: [Hnoi2013]切糕
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1495 Solved: 819[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- BZOJ_3144_[Hnoi2013]切糕_最小割
BZOJ_3144_[Hnoi2013]切糕_最小割 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R ...
随机推荐
- onlyoffice文档协作的权限开发,利用casbin和golang语言
登录用户,对于已经进行了权限设置的文档,将根据权限数据库,比对用户名,当与用户有关时,就显示相对应的权限,当都与登录用户无关时,则显示拒绝访问: 对于未登录用户,已经设置了权限的文档,都将显示拒绝访问 ...
- 8.什么是模块,模块的导入,__name__
相关内容: 什么是模块 模块的导入 模块的导入 自模块的导入 同级目录导入 不同级目录导入 目录内导入目录外 目录外导入目录内 __name__ 首发时间:2018-02-04 15:23 修改: 2 ...
- RBAC用户权限管理数据库设计【转载】
本文转载自:https://www.kancloud.cn/martist/ma_zhao_liu/374123 简单地说,一个用户拥有若干角色,每一个角色拥有若干权限.这样,就构造成“用户-角色-权 ...
- 迁移MSSQL实例的所有login(包含密码)
迁移数据库的时候肯定会涉及到login的迁移(包含数据库除外). 而一般我们迁移login的时候,可能会使用在某个login上右键生成脚本这样的做法.但是这样生成的脚本不能把密码也生成出来. 而且你只 ...
- 使用yum下载rpm包
查看系统有哪些可用的yum源yum repolist all yum指定本地源安装rpm包yum install <package-name> --enablerepo=<repos ...
- SQL SERVR 逻辑函数
IIF: 根据布尔表达式计算为 true 还是 false,返回其中一个值. IIF 是一种用于编写 CASE 表达式的快速方法. 它将传递的布尔表达式计算为第一个参数,然后根据计算结果返回其他两个参 ...
- C++课堂作业_02_PAT1025.反转链表
The 1st classwork of the C++ program 题目:PAT.1025.反转链表 github链接:Click Here mdzz,做完题目的第一感受= = 这道题的题意就是 ...
- 将jar包添加到maven仓库
Maven资源库配置 访问http://mvnrepository.com/,在搜索栏中输入你要搜索的 JAR 包的关键字 例如下载ImpalaJDBC41这个jar包 选择你想要下载的Jar包版 ...
- 20145236《网络对抗》Exp1 逆向及Bof基础
20145236<网络对抗>Exp 1逆向及Bof基础 一.实践目标 运行原本不可访问的代码片段 强行修改程序执行流 以及注入运行任意代码. 二.基础知识及实践准备 理解EIP寄存器及其功 ...
- CSS做一个Switch开关
本文为博主原创,转载请注明出处. Switch开关: 根据需求可知,Switch开关只有两种选择,true或false.所以我们想到HTML的checkbox控件,用它来做. <input id ...