%%ZZKdalao上课讲的题目,才知道网络流的这种玄学建模

我们先想一想,如果没有D的限制,那么想当于再每一根纵轴上选一个权值最小的点再加起来

我们对应在网络流上就是每一根纵轴上的点向它下方的点用权值当边值进行连边,然后要割掉一些边,代价最小就是求最小割

然后我们考虑限制,就是如果割了某一根数轴上高度为x的点,那么所有与它相邻的纵轴都只能割高度为[x-d,x+d]的点

这个时候我们就要知道一个常用技巧:在求最小割时,我们可以把那些无法割去的边边权设为INF

因此我们在建边时,由纵轴上一度为x的点高向与它相邻的纵轴上高度为x-d的点连边,边权为INF

为什么呢,我们结合一个图来看一下:

其中红色的边表示边权为INF,无法割去

当我们选择割掉5-7的这条边时,会发现2-4这条边无法割去。因为就算割去了也可以从5-4这条边过去。这就达到了我们的目的

因此我们这样建边之后跑最大流即可

CODE

#include<cstdio>
#include<cstring>
using namespace std;
const int N=45,INF=1e9,fx[4]={0,1,0,-1},fy[4]={1,0,-1,0};
struct edge
{
int to,next,c;
}e[N*N*N*20];
int v[N][N][N],head[N*N*N],dep[N*N*N],Q[N*N*N],p,q,r,d,s,t,cnt=-1;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline int get_num(int x,int y,int z)
{
return x*p*q+y*q+z;
}
inline void add(int x,int y,int z)
{
e[++cnt].to=y; e[cnt].c=z; e[cnt].next=head[x]; head[x]=cnt;
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline bool BFS(void)
{
memset(dep,0,sizeof(dep));
dep[s]=1; Q[1]=s;
int H=0,T=1;
while (H<T)
{
int now=Q[++H];
for (register int i=head[now];i!=-1;i=e[i].next)
if (!dep[e[i].to]&&e[i].c)
{
dep[e[i].to]=dep[now]+1;
Q[++T]=e[i].to;
}
}
return dep[t];
}
inline int DFS(int now,int dist)
{
if (now==t) return dist;
int res=0;
for (register int i=head[now];i!=-1&&dist;i=e[i].next)
if (dep[e[i].to]==dep[now]+1&&e[i].c)
{
int dis=DFS(e[i].to,min(dist,e[i].c));
dist-=dis; res+=dis;
e[i].c-=dis; e[i^1].c+=dis;
}
if (!res) dep[now]=0;
return res;
}
inline int Dinic(void)
{
int res=0;
while (BFS()) res+=DFS(s,INF);
return res;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k;
memset(e,-1,sizeof(e));
memset(head,-1,sizeof(head));
read(p); read(q); read(r); read(d); s=0; t=get_num(r,p,q)+1;
for (i=1;i<=r;++i)
for (j=1;j<=p;++j)
for (k=1;k<=q;++k)
read(v[i][j][k]);
for (i=1;i<=p;++i)
for (j=1;j<=q;++j)
add(s,get_num(0,i,j),INF),add(get_num(0,i,j),s,0),add(get_num(r,i,j),t,INF),add(t,get_num(r,i,j),0);
for (i=1;i<=r;++i)
for (j=1;j<=p;++j)
for (k=1;k<=q;++k)
add(get_num(i-1,j,k),get_num(i,j,k),v[i][j][k]),add(get_num(i,j,k),get_num(i-1,j,k),0);
for (i=d;i<=r;++i)
for (j=1;j<=p;++j)
for (k=1;k<=q;++k)
for (register int kind=0;kind<4;++kind)
{
int x=j+fx[kind],y=k+fy[kind];
if (x>0&&x<=p&&y>0&&y<=q)
add(get_num(i,j,k),get_num(i-d,x,y),INF),add(get_num(i-d,x,y),get_num(i,j,k),0);
}
printf("%d",Dinic());
return 0;
}

Luogu P3227 [HNOI2013]切糕的更多相关文章

  1. Luogu P3227 [HNOI2013]切糕 最小割

    首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...

  2. P3227 [HNOI2013]切糕

    题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你能帮她找出最好的切割方案 ...

  3. [洛谷P3227][HNOI2013]切糕

    题目大意:有一个$n\times m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价.$n,m,k,D\leqsla ...

  4. 洛谷 P3227 [HNOI2013]切糕(最小割)

    题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y' ...

  5. 洛谷$P3227\ [HNOI2013]$切糕 网络流

    正解:网络流 解题报告: 传送门! 日常看不懂题系列,,,$QAQ$ 所以先放下题目大意趴$QwQ$,就说有个$p\cdot q$的矩阵,每个位置可以填一个$[1,R]$范围内的整数$a_{i,j}$ ...

  6. bzoj3144 [HNOI2013]切糕(最小割)

    bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...

  7. BZOJ 3144: [Hnoi2013]切糕

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1495  Solved: 819[Submit][Status] ...

  8. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  9. BZOJ_3144_[Hnoi2013]切糕_最小割

    BZOJ_3144_[Hnoi2013]切糕_最小割 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R ...

随机推荐

  1. MVC与单元测试实践之健身网站(一)-项目概述

    前不久刚刚通过租房网站的开发学习了MVC,并随后学习了单元测试相关的基础,现在开始健身网站的开发,该项目将结合MVC与单元测试,在开发实践过程中,趁热打铁,巩固并运用之前的内容. 一 健身网站功能描述 ...

  2. RecyclerView打造通用的万能Adapter

    既然想做到通用那么现在摆在面前的就三个问题:数据怎么办?布局怎么办? 绑定怎么办?.数据决定采用泛型,布局打算直接构造传递,绑定显示效果肯定就只能回传. 1 基本改造 数据决定采用泛型,布局打算直接构 ...

  3. 简单的分页小demo

    public class Demo { public static void main(String[] args) { Scanner sc = new Scanner(System.in); Sy ...

  4. PMS与orcalebs结合之字段

    call fnd_global.APPS_INITIALIZE(1318,50583,401) select fnd_profile.VALUE('ORG_ID') FROM DUAL select ...

  5. 如何将同一云服务下的虚拟机从经典部署模型迁移到 Azure Resource Manager

    适用场景 用户希望将特定云服务下的所有虚拟机从经典部署模型(以下简称:ASM)迁移到 Azure Resource Manager(以下简称:ARM). Note 如果云服务下使用 VNET 也希望将 ...

  6. Linux 文本处理命令

    最近在使用 BASH 进行处理 文本文件的时候,对于文本处理真的是力不从心,今天进行搜集一下linux 中文本处理相关的命令,这样你在进行书写shell 脚本的时候,就能写出更好的方案. 命令搜集: ...

  7. Java 中File类的createNewFile()与createTempFile(), delete和deleteOnExit区别

    1. Java 中File类的createNewFile()与createTempFile()的区别 最近,在看代码时看到了一个方法, File.createTempFile() ,由此联想到File ...

  8. firefox(火狐)和Chrome(google)浏览器清空缓存操作的方法指引

    摘要说明: 1.系统做升级更新,更新了css和js 2.系统更新有,因为缓存问题,有客户反馈新增功能不能使用 3.所以要清空缓存,提供火狐和谷歌浏览器清空缓存的操作指引 4.附:代码层面的清空缓存方案 ...

  9. October 16th 2017 Week 42nd Monday

    The more decisions that you are forced to make alone, the more you are aware of your freedom to choo ...

  10. File API

    ES5 推出了一系列的 API: BLOB (二进制大对象) File (文件接口,基于 BLOB,但是增加了文件相关的方法,比如路径,大小) FileList (借助 <input type= ...