Given an array consisting of n integers, find the contiguous subarray whose length is greater than or equal to k that has the maximum average value. And you need to output the maximum average value.

Example 1:

Input: [1,12,-5,-6,50,3], k = 4
Output: 12.75
Explanation:
when length is 5, maximum average value is 10.8,
when length is 6, maximum average value is 9.16667.
Thus return 12.75.

Note:

  1. 1 <= k <= n <= 10,000.
  2. Elements of the given array will be in range [-10,000, 10,000].
  3. The answer with the calculation error less than 10-5 will be accepted.

Idea 1. Brute force, use the idea on maximum subarray(Leetcode 53), for any pairs (i, j), j - i >= k-1, 0 <= i  <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far.

Time complexity: O(n2)

Space complexity: O(1)

public class Solution {
public double findMaxAverage(int[] nums, int k) {
double maxAverage = Integer.MIN_VALUE; for(int i = 0; i < nums.length; ++i) {
double sum = 0;
for(int j = i; j < nums.length; ++j) {
sum += nums[j];
if(j-i + 1 >= k) {
maxAverage = Math.max(maxAverage, sum/(j-i+1));
}
}
} return maxAverage;
}
}

Idea 1.a Brute force, use the idea on Maximum Average Subarray I (Leetcode 643). Linearly find all the maximum average subarray for subarray length >= k.

public class Solution {
public double findMaxAverageWithLengthK(int[] nums, int k) {
double sum = 0;
for(int i = 0; i < k; ++i) {
sum += nums[i];
} double maxSum = sum;
for(int i = k; i < nums.length; ++i) {
sum = sum + nums[i] - nums[i-k];
maxSum = Math.max(maxSum, sum);
} return maxSum/k;
}
public double findMaxAverage(int[] nums, int k) {
double maxAverage = Integer.MIN_VALUE; for(int i = k; i < nums.length; ++i) {
double average = findMaxAverageWithLengthK(nums, i);
maxAverage = Math.max(maxAverage, average);
} return maxAverage;
}
}

Idea 2. Smart idea, use two techniques

1. Use binary search to guess the maxAverage, minValue in the array <= maxAverage <= maxValue in the array, assumed the guesed maxAverage is mid, if there exists a subarray with length >= k whos average is bigger than mid, then the maxAverage must be located between [mid, maxValue], otherwise between [minValue, mid].

2. How to efficiently check if there exists a subarray with length >= k whos average is bigger than mid? do you still remember the cumulative sum in maximum subArray? maximum sum subarray with length >= k can be computed by cumu[j] - min(cumu[i]) where j - i + 1 >= 0. If we deduct each element with mid (nums[i] -mid), the problem is transfered to find if there exists a subarray whoes sum >= 0. Since this is not strictly to find the maxSum, in better case if any subarray's sum >= 0, we terminate the search early and return true; in worst case we search all the subarray and find the maxmum sum, then check if maxSum >= 0.

Time complexity: O(nlogn)

Space complexity: O(1)

public class Solution {
private boolean containsAverageArray(List<Integer> nums, double targetAverage, int k) {
double sum = 0;
for(int i = 0; i < k; ++i) {
sum += nums.get(i) - targetAverage;
} if(sum >= 0) return true; double previousSum = 0;
double minPreviousSum = 0;
double maxSum = -Double.MAX_VALUE;
for(int i = k; i < nums.size(); ++i) {
sum += nums.get(i) - targetAverage;
previousSum += nums.get(i-k) - targetAverage;
minPreviousSum = Math.min(minPreviousSum, previousSum);
maxSum = Math.max(maxSum, sum - minPreviousSum);
if (maxSum >= 0) {
return true;
}
} return false;
} public double findMaxAverage(List<Integer> nums, int k) { double minItem = Collections.min(nums);
double maxItem = Collections.max(nums); while(maxItem - minItem >= 1e-5 ) {
double mid = minItem + (maxItem - minItem)/2.0; boolean contains = containsAverageArray(nums, mid, k);
if (contains) {
minItem = mid;
}
else {
maxItem = mid;
} } return maxItem;
}
}

We can reduce one variable, maxSum, terminate if sum - minPrevious >= 0, sum - minPreviousSum is the maxSum ended at current index.

a. sum - minPrevious < 0 if maxSum > sum - minPrevious,  maxSum < 0 in previous check

b. sum - minPrevious < 0 if maxSum < sum -minPrevious < 0

c. sum - minPrevious > 0 if maxSum < 0 < sum - minPrevious

public class Solution {
private boolean containsAverageArray(List<Integer> nums, double targetAverage, int k) {
double sum = 0; for(int i = 0; i < k; ++i) {
sum += nums.get(i) - targetAverage;
}
if(sum >= 0) return true; double previousSum = 0;
double minPreviousSum = 0;
for(int i = k; i < nums.size(); ++i) {
sum += nums.get(i) - targetAverage;
previousSum += nums.get(i-k) - targetAverage;
minPreviousSum = Math.min(minPreviousSum, previousSum);
if(sum >= minPreviousSum ) {
return true;
}
} return false;
} public double findMaxAverage(List<Integer> nums, int k) { double minItem = Collections.min(nums);
double maxItem = Collections.max(nums); while(maxItem - minItem >= 1e-5 ) {
double mid = minItem + (maxItem - minItem)/2.0; boolean contains = containsAverageArray(nums, mid, k);
if (contains) {
minItem = mid;
}
else {
maxItem = mid;
} } return maxItem;
} }

Idea 3. There is a O(n) solution listed on this paper section 3 (To read maybe)
https://arxiv.org/pdf/cs/0311020.pdf

Maximum Average Subarray II LT644的更多相关文章

  1. leetcode644. Maximum Average Subarray II

    leetcode644. Maximum Average Subarray II 题意: 给定由n个整数组成的数组,找到长度大于或等于k的连续子阵列,其具有最大平均值.您需要输出最大平均值. 思路: ...

  2. [LeetCode] Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  3. [LeetCode] 644. Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  4. Maximum Average Subarray II

    Description Given an array with positive and negative numbers, find the maximum average subarray whi ...

  5. LC 644. Maximum Average Subarray II 【lock,hard】

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  6. 643. Maximum Average Subarray I 最大子数组的平均值

    [抄题]: Given an array consisting of n integers, find the contiguous subarray of given length k that h ...

  7. LeetCode 643. 子数组最大平均数 I(Maximum Average Subarray I)

    643. 子数组最大平均数 I 643. Maximum Average Subarray I 题目描述 给定 n 个整数,找出平均数最大且长度为 k 的连续子数组,并输出该最大平均数. LeetCo ...

  8. Maximum Average Subarray

    Given an array with positive and negative numbers, find the maximum average subarray which length sh ...

  9. 【Leetcode_easy】643. Maximum Average Subarray I

    problem 643. Maximum Average Subarray I 题意:一定长度的子数组的最大平均值. solution1:计算子数组之后的常用方法是建立累加数组,然后再计算任意一定长度 ...

随机推荐

  1. Spring <tx:annotation-driven>注解 JDK动态代理和CGLIB动态代理 区别。

    基于JDK动态代理和CGLIB动态代理的实现Spring注解管理事务(@Trasactional)到底有什么区别. 我还是喜欢基于Schema风格的Spring事务管理,但也有很多人在用基于@Tras ...

  2. springboot 集成 redis

    导入maven依赖 <!-- springboot整合 redis --> <dependency> <groupId>org.springframework.bo ...

  3. app.route()

    [app.route()] 可使用 app.route() 创建路由路径的链式路由句柄.由于路径在一个地方指定,这样做有助于创建模块化的路由,而且减少了代码冗余和拼写错误.请参考 Router() 文 ...

  4. 分享一个 Java String split 快速分割的方法

    java中string.split() 方法比较强大,但是split()方法采用正则表达式,速度相对会慢一点, 其实大多数场景下并不需要使用正则表达式,下面分享一个不使用正则表达式分隔字符串的方法. ...

  5. cdnbest的站点日志保存时间怎么设置

    站点的保存时间是以节点全局里的保存时间为准 站点的日志保存大小还不能设置

  6. RedHat 更新CentOS Yum源(转)

    经测试,可用.转自:https://www.cnblogs.com/tangsen/p/5151994.html 一.随笔引言 1.1随笔内容: 1.RedHat 配置Centos yum源 2.yu ...

  7. WAS 常见报错

    1) An error occurred while deleting the server. ADMG0011E: An unexpected exception occurred com.ibm. ...

  8. jsp页面之初体验

    最近在学jsp 在web.xml页面中学到了如何让一个页面第一个启动

  9. AltiumDesigner 网络标号放置技巧

    我们在使用AD画图的过程中,灵活的使用一些小技巧可以使我们的工作事半功倍,今天给大家介绍一种在画原理图过程中的小技巧. 我们在画原理图过程中经常会放置网络标号,尤其是很多芯片管脚上,例如现在我需要在这 ...

  10. PHP: PCRE 函数- Manual

    1.函数 http://php.net/manual/zh/ref.pcre.php 2.语法 http://www.runoob.com/regexp/regexp-tutorial.html