第一部分:重要的组件

Combiner
•什么是Combiner
•combine函数把一个map函数产生的<key,value>对(多个key, value)合并成一个新的<key2,value2>. 将新的<key2,value2>作为输入到reduce函数中,其格式与reduce函数相同。
•这样可以有效的较少中间结果,减少网络传输负荷。
 
•什么情况下可以使用Combiner
•可以对记录进行汇总统计的场景,如求和。
•求平均数的场景就不可以使用了
Combiner执行时机
•运行combiner函数的时机有可能会是merge完成之前,或者之后,这个时机可以由一个参数控制,即 min.num.spill.for.combine(default 3)
•当job中设定了combiner,并且spill数最少有3个的时候,那么combiner函数就会在merge产生结果文件之前运行
•通过这样的方式,就可以在spill非常多需要merge,并且很多数据需要做conbine的时候,减少写入到磁盘文件的数据数量,同样是为了减少对磁盘的读写频率,有可能达到优化作业的目的。
•Combiner也有可能不执行, Combiner会考虑当时集群的负载情况。
Combiner如何使用
•代码示例
•继承Reducer类
public static class Combiner extends MapReduceBase implements
           Reducer<Text, Text, Text, Text> {
       public void reduce(Text key, Iterator<Text> values,
               OutputCollector<Text, Text> output, Reporter reporter)
               throws IOException {
                 }
    }
 
•配置作业时加入conf.setCombinerClass(Combiner.class)
 
Partitioner
•什么是Partitioner
•Mapreduce 通过Partitioner 对Key 进行分区,进而把数据按我们自己的需求来分发。
•什么情况下使用Partitioner
•如果你需要key按照自己意愿分发,那么你需要这样的组件。
•例如:数据文件内包含省份,而输出要求每个省份输出一个文件。
•框架默认的HashPartitioner
•public class HashPartitioner<K, V> extends Partitioner<K, V> {

/** Use {@link Object#hashCode()} to partition. */  
  public int getPartition(K key, V value,  
                          int numReduceTasks) {  
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;  
  } 

Partitioner如何使用
•实现Partitioner接口覆盖getPartition()方法
•配置作业时加入conf.setPartitionerClass(MyPartitioner.class);
•Partitioner示例
        public static class MyPartitioner implements Partitioner<Text, Text> {
           
         @Override 
            public int getPartition(Text key, Text value, int numPartitions) {
             }
 
}
Partitioner需求示例
•需求描述
•数据文件中含有省份
•需要相同的省份送到相同的Reduce里
•从而产生不同的文件
•数据样例
•1 liaoning
•1 代表该省份有多少个直辖市
•步骤
•实现Partitioner,覆盖getPartition
•根据省份字段进行切分
 

RecordReader
•什么是RecordReader
•用于在分块中读取<Key,Value>对,也就是说每一次我们读取一条记录都会调用该类。
•主要是处理经过InputFormat分片完的数据 
•什么时候使用RecordReader
•需要对输入的数据按自己的需求处理
•如:要求输入的key不是文件的偏移量而是文件的路径或者名字
•系统默认为LineRecordReader
•按照每行的偏移量做为map输出时的key值,每行的内容作为map的value值,默认的分隔符是回车和换行。
 
RecordReader需求示例
•需求
•更改map对应的输入的<key,value>值,key对应的文件的路径(或者是文件名),value对应的是文件的内容(content)。
•步骤
•重写InputFormat不对文件切分
•重写RecordReader
•在配置作业时使用自定义的组件进行数据处理
 
 
第二部分:Join
案例分析
•输入为2个文件,文件一内容如下
•空格分割:用户名 手机号 年龄
•内容样例
•Tom 1314567890 14
•文件二内容
•空格分割:手机号 地市
•内容样例
•13124567890 hubei
•需要统计出的汇总信息为 用户名 手机号 年龄 地市
Map端Join
•设计思路
•使用DistributedCache.addCacheFile()将地市的文件加入到所有Map的缓存里
•在Map函数里读取该文件,进行Join
•  将结果输出到reduce
•需要注意的是
•DistributedCache需要在生成Job作业前使用
 
Reduce端Join
•设计思路
•Map端读取所有文件,并在输出的内容里加上标识代表数据时从哪个文件里来的
•在reduce对按照标识对数据进行保存
•然后根据Key的Join来求出结果直接输出
 
第三部分:排序
 
普通排序
•Mapreduce本身自带排序功能
•Text对象是不适合排序的,如果内容为整型不会安照编码顺序去排序
•一般情况下我们可以考虑以IntWritable做为Key,同时将Reduce设置成0 ,进行排序
 
部分排序
•即输出的每个文件都是排过序的
•如果我们不需要全局排序,那么这是个不错的选择。
 
全局排序
•产生背景
•Hadoop平台没有提供全局数据排序,而在大规模数据处理中进行数据的全局排序是非常普遍的需求。
•使用hadoop进行大量的数据排序排序最直观的方法是把文件所有内容给map之后,map不做任何处理,直接输出给一个reduce,利用hadoop的自己的shuffle机制,对所有数据进行排序,而后由reduce直接输出。
•快速排序基本步骤就是需要现在所有数据中选取一个作为支点。然后将大于这个支点的放在一边,小于这个支点的放在另一边。
 
设想如果我们有 N 个支点(这里可以称为标尺),就可以把所有的数据分成 N+1 个 part ,将这 N+1 个 part 丢给 reduce,由 hadoop 自动排序,最后输出 N+1 个内部有序的文件,再把这 N+1 个文件首尾相连合并成一个文件,收工 。
由此我们可以归纳出这样一个用 hadoop 对大量数据排序的步骤:
1 )   对待排序数据进行抽样;
2 )   对抽样数据进行排序,产生标尺;
3 )   Map 对输入的每条数据计算其处于哪两个标尺之间;将数据发给对应区间 ID 的 reduce
4 )   Reduce 将获得数据直接输出。
•Hadoop 提供了Sampler接口可以返回一组样本,该接口为Hadoop的采样器。
           public interface Sampler<K, V> {
                        K[] getSample(InputFormat<K, V> inf, Job job)
                         throws IOException, InterruptedException;
            }
•Hadoop提供了一个TotalOrderPartitioner,可以使我们来实现全局排序。
二次排序
•产生背景
•MapReduce默认会对key进行排序
•将输出到Reduce的values也进行预先的排序
•实现方式
•重写Partitioner,完成key分区,进行第一次排序
•实现WritableComparator,完成自己的排序逻辑,完成key的第2次排序
•原理
•Map之前的数据
         key1  1
         key2  2
         key2  3
         key3  4
         key1  2
•Mapduce只能排序key,所以为了二次排序我们要重新定义自己的key 简单说来就是<key value> value ,组合完后
         <key1  1 >    1
         <key2  2 >    2
         <key2  3 >    3
         <key3  4>     4
         <key1  2 >    2
 
•原理
•接下来实现自定义的排序类,分组类,数据变成
         <key1  1 >    1
         <key1  2 >    2
         <key2  2 >    2
         <key2  3 >    3
         <key3  4>     4
•最后 reduce处理后输出结果
           key1  1
           key1  2
           key2  2
           key2  3
           key3  4
 

 
第四部分:计数器
•什么是计数器
            计数器主要用来收集系统信息和作业运行信息,用于知道作业成功、失败等情况,比日志更便利进行分析。
•内置计数器
•Hadoop内置的计数器,记录作业执行情况和记录情况。包括MapReduce框架、文件系统、作业计数三大类。
•计数器由关联任务维护,定期传递给tasktracker,再由tasktracker传给jobtracker。
•计数器可以被全局聚集。内置的作业计数器实际上由jobtracker维护,不必在整个网络中传递。
•当一个作业执行成功后,计数器的值才是完整可靠的。
 
用户自定义Java计数器
•MapReduce框架允许用户自定义计数器
•计数器是全局使用的
•计数器有组的概念,可以由一个Java枚举类型来定义
•如何配置
•0.20.2以下的版本使用Reporter,
•0.20.2以上的版本使用context.getCounter(groupName, counterName) 来获取计数器配置并设置。
•动态计数器
•所谓动态计数器即不采用Java枚举的方式来定义
 
•Reporter中的获取动态计数器的方法
•public void incrCounter(String group,String counter,long amount)
            组名称,计数器名称,计数值
 
•一些原则
•创建计数器时,尽量让名称易读
 

•获取计数器
•Web UI
•命令行 hadoop job-counter
•Java API
•Java API
•在作业运行完成后,计数器稳定后获取。 使用job.getCounters()得到Counters
 

 
第五部分:合并小文件示例
•产生背景
•Hadoop不适合处理小文件
•会占用大量的内存空间
•解决方案
•文件内容读取到SequenceFile内

mapreduce的组件介绍的更多相关文章

  1. Hadoop以及组件介绍

    一.背景介绍 在接触过大数据相关项目的时候常常都会听到Hadoop这个东西,简单来说,他是一个用分布式计算来处理大数据的开源软件,下面包含了许多的组件和子项目,这篇文章将会介绍Hadoop的原理以及一 ...

  2. 开源免费且稳定实用的.NET PDF打印组件itextSharp(.NET组件介绍之八)

    在这个.NET组件的介绍系列中,受到了很多园友的支持,一些园友(如:数据之巅. [秦时明月]等等这些大神 )也给我提出了对应的建议,我正在努力去改正,有不足之处还望大家多多包涵.在传播一些简单的知识的 ...

  3. 免费开源的.NET多类型文件解压缩组件SharpZipLib(.NET组件介绍之七)

    前面介绍了六种.NET组件,其中有一种组件是写文件的压缩和解压,现在介绍另一种文件的解压缩组件SharpZipLib.在这个组件介绍系列中,只为简单的介绍组件的背景和简单的应用,读者在阅读时可以结合官 ...

  4. 免费高效实用的.NET操作Excel组件NPOI(.NET组件介绍之六)

    很多的软件项目几乎都包含着对文档的操作,前面已经介绍过两款操作文档的组件,现在介绍一款文档操作的组件NPOI. NPOI可以生成没有安装在您的服务器上的Microsoft Office套件的Excel ...

  5. 免费开源的DotNet任务调度组件Quartz.NET(.NET组件介绍之五)

    很多的软件项目中都会使用到定时任务.定时轮询数据库同步,定时邮件通知等功能..NET Framework具有“内置”定时器功能,通过System.Timers.Timer类.在使用Timer类需要面对 ...

  6. 免费开源的DotNet二维码操作组件ThoughtWorks.QRCode(.NET组件介绍之四)

    在生活中有一种东西几乎已经快要成为我们的另一个电子”身份证“,那就是二维码.无论是在软件开发的过程中,还是在普通用户的日常中,几乎都离不开二维码.二维码 (dimensional barcode) , ...

  7. 最好的.NET开源免费ZIP库DotNetZip(.NET组件介绍之三)

    在项目开发中,除了对数据的展示更多的就是对文件的相关操作,例如文件的创建和删除,以及文件的压缩和解压.文件压缩的好处有很多,主要就是在文件传输的方面,文件压缩的好处就不需要赘述,因为无论是开发者,还是 ...

  8. 高效而稳定的企业级.NET Office 组件Spire(.NET组件介绍之二)

    在项目开发中,尤其是企业的业务系统中,对文档的操作是非常多的,有时几乎给人一种错觉的是”这个系统似乎就是专门操作文档的“.毕竟现在的很多办公中大都是在PC端操作文档等软件,在这些庞大而繁重的业务中,单 ...

  9. 一款开源免费的.NET文档操作组件DocX(.NET组件介绍之一)

    在目前的软件项目中,都会较多的使用到对文档的操作,用于记录和统计相关业务信息.由于系统自身提供了对文档的相关操作,所以在一定程度上极大的简化了软件使用者的工作量. 在.NET项目中如果用户提出了相关文 ...

随机推荐

  1. JIRA部署破解和confluence整合

    JIRA是一个项目跟踪管理工具,帮助团队创建计划任务.构建并发布优秀的产品.全球成千上万的团队选择JIRA,用JIRA来捕获.组织管理缺陷.分配任务,跟踪团队的活动.不论在桌面PC还是移动终端设备上, ...

  2. 通过动态包含和Ajax机制抽取Web应用的公共页面

    在Java Web应用开发中,经常遇到的一种情况是,许多的页面中都包含着“公共页面”,这部分动态页面的特征是:访问量大,会带来较大的性能压力.功能设计上会动态地改变自身的元素.比如在登录前和登录后所展 ...

  3. win 批处理

    前言 批处理文件(batch file)包含一系列 DOS命令,通常用于自动执行重复性任务.用户只需双击批处理文件便可执行任务,而无需重复输入相同指令.编写批处理文件非常简单,但难点在于确保一切按顺序 ...

  4. java.util.concurrent BlockingQueue详解

    什么是阻塞队列? 阻塞队列(BlockingQueue)是一个支持两个附加操作的队列.这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空.当队列满时,存储元素的线程会等待队列可用.阻塞 ...

  5. [代码]--ORA-01843: 无效的月份

    1.插入的日期如果是DateTime类型的,没有影响 2.如果DateTime.ToString()获取的日期,就会报错,例如(@param_datetime = cf.GetServerDateTi ...

  6. Cuba项目从远程Git仓库下载步骤

    Cuba Studio 从Git远程仓库里下载代码,并且可以使用IDEA打开,需要注意的地方: 1.使用Git Gui克隆代码 也可以使用IDEA本身集成的Git下载,但是要保证:下载了项目以后,不能 ...

  7. css后代选择器 .属性 元素 与 元素.属性的区别

    经常看见css的后代选择器是这样的写法: div.class   和 .class div 的形式两者的区别: div.class  是选中的类名为class 的div元素,与直接使用类选择器.cla ...

  8. Oracle中对number类型数据to_char()出现各位少0,或者值为###的处理

    问题描述: 在Oracle中使用to_char()函数时当number值为小数时,常常个位0不显示 比如:select to_char(0.02) from dual,结果为.02 改进为 selec ...

  9. Java Try-with-resources

    目录 资源管理与 Try-Catch-Finally,旧风格 Try-with-resources 管理多个资源 自定义 AutoClosable 实现 Try-with-resources 是 ja ...

  10. git 中断 merge

    git 版本 >= 1.6.1 git reset --merge git 版本 >= 1.7.4 git merge --abort