https://www.cnblogs.com/gaoxing/p/4253833.html

netty的buffer引入了缓冲池。该缓冲池实现使用了jemalloc的思想

内存分配是面向虚拟内存的而言的,以页为单位进行管理的,页的大小一般为4kb,当在堆里创建一个对象时(小于4kb),会分配一个页,当再次创建一个对象时会判断该页剩余大小是否够,够的话使用该页剩余的内存,减少系统调用

内存分配的核心思想概括起来有3条

1:首先讲内存区(memory pool)以最小单位(chunk)定义出来 ,然后区分对象大小分别管理内存,小内存定义不同的规格(bins),根据不同的bin分配固定大小的内存块,并用一个表
管理起来,大对象则以页为单位进行管理,配合小对象所在的页,降低碎片,设计一个好的存储方案(metadata)减少对内存的占用,同时优化内存信息的存储。以使对每个bin或大内存区域的访问性能最优且有上限。


2:当释放内存时,要能够合并小内存为大内存,该保留的保留下次可快速响应,不该保留的释放给系统
3:多线程环境下,每个线程可以独立的占有一段内存区间(TLS),这样线程内操作可以不加锁

1:arena:把内存分成许多不同的小块来分而治之,该小块便是arena,让我们想象一下,给几个小朋友一张大图纸,让他们随意地画点。结果可想而知,他们肯定相互顾忌对方而不敢肆意地画(synchronization),从而影响画图效率。但是如果老师事先在大图纸上划分好每个人的区域,小朋友们就可以又快又准地在各自地领域上画图。这样的概念就是arena。它是jemalloc的核心分配管理区域,对于多核系统,会默认分配4*cores个arena 。线程采用轮询的方式来选择响应的arena进行内存分配。

2 : chunk。具体进行内存分配的区域,默认大小是4M,chunk以page为单位进行管理,每个chunk的前6个page用于存储后面page的状态,比如是否分配或已经分配

3:bin:用来管理各个不同大小单元的分配,比如最小的Bin管理的是8字节的分配,每个Bin管理的大小都不一样,依次递增。

4:run:每个bin在实际上是通过对它对应的正在运行的Run进行操作来进行分配的,一个run实际上就是chunk里的一块区域,大小是page的整数倍,具体由实际的bin来决定,比如8字节的bin对应的run就只有1个page,可以从里面选取一个8字节的块进行分配。在run的最开头会存储着这个run的信息,比如还有多少个块可供分配。

5:tcache。线程对应的私有缓存空间,默认是使用的。因此在分配内存时首先从tcache中找,miss的情况下才会进入一般的分配流程。

arena和bin的关系:每个arena有个bin数组,每个bin管理不同大小的内存run通过它的配置去获取相应大小的内存),每个tcahe有一个对应的arena,它本身也有一个bin数组(称为tbin),前面的部分与arena的bin数组是对应的,但它长度更大一些,因为它会缓存一些更大的块;而且它也没有对应的run的概念

chunk与run的关系:chunk默认是4M,而run是在chunk中进行实际分配的操作对象,每次有新的分配请求时一旦tcache无法满足要求,就要通过run进行操作,如果没有对应的run存在就要新建一个,哪怕只分配一个块,比如只申请一个8字节的块,也会生成一个大小为一个page(默认4K)的run;再申请一个16字节的块,又会生成一个大小为4096字节的run。run的具体大小由它对应的bin决定,但一定是page的整数倍。因此实际上每个chunk就被分成了一个个的run。

内存分配的,具体流程如下:

       1.   如果请求size不大于arena的最小的bin(笔者机器上是3584字节),那么就通过线程对应的tcache来进行分配。首先确定size的大小属于哪一个tbin,比如2字节的size就属于最小的8字节的tbin,然后查找tbin中有没有缓存的空间,如果有就进行分配,没有则为这个tbin对应的arena的bin分配一个run,然后把这个run里面的部分块的地址依次赋给tcache的对应的bin的avail数组,相当于缓存了一部分的8字节的块,最后从这个availl数组中选取一个地址进行分配;
       2.   如果请求size大于arena的最小的bin,同时不大于tcache能缓存的最大块(笔者机器上是32K),也会通过线程对应的tcache来进行分配,但方式不同。首先看tcache对应的tbin里有没有缓存块,如果有就分配,没有就从chunk里直接找一块相应的page整数倍大小的空间进行分配(当这块空间后续释放时,这会进入相应的tcache对应的tbin里);
       3.   如果请求size大于tcache能缓存的最大块,同时不大于chunk大小(默认是4M),具体分配和第2类请求相同,区别只是没有使用tcache;
       4.   如果请求大于chunk大小,直接通过mmap进行分配。
 
       回收流程大体和分配流程类似,有tcache机制的会将回收的块进行缓存,没有tcache机制的直接回收(不大于chunk的将对应的page状态进行修改,回收对应的run;大于chunk的直接munmap)。需要关注的是jemalloc何时会将内存还给操作系统,因为ptmalloc中存在因为使用top_chunk机制(详见华庭的文章)而使得内存无法还给操作系统的问题。目前看来,除了大内存直接munmap,jemalloc还有两种机制可以释放内存:
       1.   当释放时发现某个chunk的所有内存都已经为脏(即分配后又回收)就把整个chunk释放;
       2.   当arena中的page分配情况满足一个阈值时对dirty page进行purge(通过调用madvise来进行)。这个阈值的具体含义是该arena中的dirty page大小已经达到一个chunk的大小且占到了active page的1/opt_lg_dirty_mult(默认为1/32)。active page的意思是已经正在使用中的run的page,而dirty page就是其中已经分配后又回收的page。

http://www.cnhalo.net/2016/06/13/memory-optimize/

与tcmalloc类似,每个线程同样在<32KB的时候无锁使用线程本地cache。

  • Jemalloc在64bits系统上使用下面的size-class分类:
    Small: [8], [16, 32, 48, …, 128], [192, 256, 320, …, 512], [768, 1024, 1280, …, 3840]
    Large: [4 KiB, 8 KiB, 12 KiB, …, 4072 KiB]
    Huge: [4 MiB, 8 MiB, 12 MiB, …]
  • small/large对象查找metadata需要常量时间, huge对象通过全局红黑树在对数时间内查找。
  • 虚拟内存被逻辑上分割成chunks(默认是4MB,1024个4k页),应用线程通过round-robin算法在第一次malloc的时候分配arena, 每个arena都是相互独立的,维护自己的chunks, chunk切割pages到small/large对象。free()的内存总是返回到所属的arena中,而不管是哪个线程调用free()。


上图可以看到每个arena管理的arena chunk结构, 开始的header主要是维护了一个page map(1024个页面关联的对象状态), header下方就是它的页面空间。 Small对象被分到一起, metadata信息存放在起始位置。 large chunk相互独立,它的metadata信息存放在chunk header map中。

    • 通过arena分配的时候需要对arena bin(每个small size-class一个,细粒度)加锁,或arena本身加锁。
      并且线程cache对象也会通过垃圾回收指数退让算法返回到arena中。

http://www.cnblogs.com/gaoxing/p/4253892.html

PoolChunk:一大块连续的内存,Netty中,这个值为16M,一次性通过 java.nio.ByteBuf 进行分配,这个内存是Direct Memory,不在JVM的GC范围之内。多个PoolChunk可以共同构成一个PoolArea。每个PoolChunk按照Buddy算法分为多个block,最小的block:order-0 block(称之为一个PoolSubPage)是8K,而后是order-1 block:16K, order-2 block:32 K,一直到 order-11 block: 16M

在PoolChunk中,使用一个int[4096] memoryMap来描述所有的block,这其实是一个二叉树来的:

0

1                2

3       4       5       6

07 08 09 10 11 12 13 14

这里, memoryMap[1] 表示的是order-11的Block,它实际上可以切分为两个order-10的block,他们由 memoryMap[2]和 memoryMap[3]来表示,每个值由3部分组成:

31     17 16         2 1 0

0-1位:标志位,00(未使用,没有这个Block)、01(Branch,当前Block以拆分,由2个低级别的block组成)、02(已分配)、03(已分配的SubPage,这个是最底层分配的Block了,可以是大于8K的Page。)

2-16位:当前块的大小,以Page为单位。

17 – 31位:当前块相对Chunk基地址的偏移量。(以Page为单元)

使用数组来替代二叉树的优势是极大的节约了内存,第N的节点的子节点是2N+1, 2N+2。在这里,16M的Chunk需要使用16K来描述,占比为0.1%

PoolSubPage对应于一个已分配的block,在Slab实现中,每个PoolSubPage都仅用于某个一定size的内存分配,例如,这个值从16、32到512(TinyPool)是按16递增,而后是1K、2K、4K、8K、16K、32K、64K…(smallPool)的递增顺序,每个SubPage都近用于分配固定大小的内存(称之为一个Slab),这样的优势是只需要使用一个bitmap就可以记录哪些内存是已分配的,以最小的16字节为单位,每个Page(8K)只需要64个字节的位图信息(占比为0.78%),而在其它块中,这个值就更小了。(目前Netty的实现在这里有一些不足,每个Page都是用了64个字节的位图,估计是便于简化SubPage自身的Pool)

每个Chunk按照Slab的大小,组织了多条队列,队列中的每个成员是SubPage,因此,当需要进行分配时,是可以最快速的完成的。

每个ByteBuf()维持了对应的Chunk,当需要释放时,可以根据当前的内存地址,迅速的定位到Chunk中对应的page,再在相应的SubPage中进行释放。整个过程只需要更新相应的bitmap即可。

忽略掉其它的内存开销,Slab+Buddy方式的内存管理成本不到1%,分配和释放速度都非常快。但是Slab的方式,整体内存的使用率方面可能会小一些,不同Slab之间的内存是不会共享的,相当于给大猫挖一个大的猫洞的情况下,也得给小猫挖一个小的猫洞。

=========================

总的来说,Netty的ByteBuf带给我们的启示就是,即便在JVM中,我们也不必拘泥于GC的内存管理方式,在更适合使用手工方式管理的情况下,我们也可以这样做,这也为Java管理海量的内存、Cache化的数据、以及高频繁分配的模式下,仍然可以借助于JVM的强大的能力,而又不是去直接管理内存的灵活性

Netty - 3 内存分配的更多相关文章

  1. Netty内存管理器ByteBufAllocator及内存分配

    ByteBufAllocator 内存管理器: Netty 中内存分配有一个最顶层的抽象就是ByteBufAllocator,负责分配所有ByteBuf 类型的内存.功能其实不是很多,主要有以下几个重 ...

  2. 《从HBase offheap到Netty的内存管理》

      JVM中的堆外内存(off-heap memory)与堆内内存(on-heap memory) 1. 堆内内存(on-heap memory) 1.1 什么是堆内内存 Java 虚拟机在执行Jav ...

  3. Netty源码—六、tiny、small内存分配

    tiny内存分配 tiny内存分配流程: 如果申请的是tiny类型,会先从tiny缓存中尝试分配,如果缓存分配成功则返回 否则从tinySubpagePools中尝试分配 如果上面没有分配成功则使用a ...

  4. Netty源码—五、内存分配概述

    Netty中的内存管理应该是借鉴了FreeBSD内存管理的思想--jemalloc.Netty内存分配过程中总体遵循以下规则: 优先从缓存中分配 如果缓存中没有的话,从内存池看看有没有剩余可用的 如果 ...

  5. Netty源码分析第5章(ByteBuf)---->第7节: page级别的内存分配

    Netty源码分析第五章: ByteBuf 第六节: page级别的内存分配 前面小节我们剖析过命中缓存的内存分配逻辑, 前提是如果缓存中有数据, 那么缓存中没有数据, netty是如何开辟一块内存进 ...

  6. Netty源码分析第5章(ByteBuf)---->第8节: subPage级别的内存分配

    Netty源码分析第五章: ByteBuf 第八节: subPage级别的内存分配 上一小节我们剖析了page级别的内存分配逻辑, 这一小节带大家剖析有关subPage级别的内存分配 通过之前的学习我 ...

  7. Netty之Page级别的内存分配

    Page 级别的内存分配: 之前我们介绍过, netty 内存分配的单位是chunk, 一个chunk 的大小是16MB, 实际上每个chunk, 都以双向链表的形式保存在一个chunkList 中, ...

  8. Netty 中的内存分配浅析

    Netty 出发点作为一款高性能的 RPC 框架必然涉及到频繁的内存分配销毁操作,如果是在堆上分配内存空间将会触发频繁的GC,JDK 在1.4之后提供的 NIO 也已经提供了直接直接分配堆外内存空间的 ...

  9. Netty 中的内存分配浅析-数据容器

    本篇接续前一篇继续讲 Netty 中的内存分配.上一篇 先简单做一下回顾: Netty 为了更高效的管理内存,自己实现了一套内存管理的逻辑,借鉴 jemalloc 的思想实现了一套池化内存管理的思路: ...

随机推荐

  1. docker下centos安装ping命令

    https://blog.csdn.net/king_gun/article/details/78423115 [问题] 从docker hub上拉取到则镜像centos:6.7在执行ping命令是报 ...

  2. logging模块知识点及应用小结

    Logging模块知识点: 一.分为5个级别:debug(),info(),warning(),error(),critical().级别由低到高  1.1最简单的用法: 1.2 如果想把日志写到文件 ...

  3. Java项目配置redis

    成功配置redis之后,便来学习使用redis.首先了解下redis的数据类型. Redis的数据类型 Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set( ...

  4. 如何优雅地等待所有的goroutine退出

    转自:https://www.cnblogs.com/cobbliu/p/4461866.html goroutine和channel是Go语言非常棒的特色,它们提供了一种非常轻便易用的并发能力.但是 ...

  5. UE4如何检测目标在锥形视野内

    转自:http://blog.csdn.net/l346242498/article/details/70237083 做UE4游戏AI方面经常会遇到一个问题,就是何如判定目标在AI单位的视野范围内, ...

  6. Pyhton基础知识(一)

    Pyhton基础知识(一)一.cpu 内存 硬盘 操作系统之间的关系1.cpu 中央处理器 运算中心与控制中心 相当于人的大脑.2.内存 暂时存储数据 将应用程序加载到内存 以便于cpu进行数据传输交 ...

  7. 10 Skills Every SharePoint Developer Needs

    10 Skills Every SharePoint Developer Needs(原文) This blog post guides you through the essential skill ...

  8. 基于centos7的真实机环境下安装 vmware workstastion

    通常我们在在虚拟机里面搭建大数据集群,如果我们换在真实机里面搭建大数据集群的话, 我们的每一台电脑就是centos系统了,这个时候如果我们需要按vmware 软件的话我们就需要下载不同的版本了 废话不 ...

  9. 《linux性能及调优指南》 3.4 硬盘瓶颈

    翻译:Hank (http://blog.csdn.net/fireroll)版权所有,尊重他人劳动成果,转载时请注明作者和原始出处及本声明.原文名称:<Linux Performance an ...

  10. ECharts学习记录

    一.ECharts在GitHub的地址以及需要引入文件地址: 1.Github地址:https://github.com/ecomfe/echarts 2.官网下载文件地址:http://echart ...