【agc001e】BBQ HARD(动态规划)

题面

atcoder

洛谷

题解

这些agc都是写的整场的题解,现在还是把其中一些题目单独拿出来发

这题可以说非常妙了。

我们可以把这个值看做在网格图上的一点\((-a[i],-b[i])\)走到\((a[j],b[j])\)的方案数。

而网格图走的方案数可以直接递推得到。

那么我们对于每个点把它的坐标取反到第三象限,然后对于整个坐标系计算走到每一个格子的总方案。

把所有\((a[i],b[i])\)的答案累加,再减去自己到自己的方案数,最后除二就是答案了。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 200200
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
const int py=2010;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int a[MAX],b[MAX],n,ans;
int f[4500][4500];
int inv[9000],jc[9000],jv[9000];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read(),b[i]=read();
for(int i=1;i<=n;++i)f[py-a[i]][py-b[i]]+=1;
for(int i=1;i<=py*2;++i)
for(int j=1;j<=py*2;++j)
add(f[i][j],f[i-1][j]),add(f[i][j],f[i][j-1]);
inv[0]=inv[1]=jc[0]=jv[0]=1;
for(int i=1;i<py<<2;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<py<<2;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<py<<2;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=n;++i)add(ans,f[a[i]+py][b[i]+py]);
for(int i=1;i<=n;++i)add(ans,MOD-C(2*(a[i]+b[i]),2*a[i]));
ans=1ll*ans*inv[2]%MOD;printf("%d\n",ans);
return 0;
}

【agc001e】BBQ HARD(动态规划)的更多相关文章

  1. [Agc001E] BBQ Hard

    [Agc001E] BBQ Hard 题目大意 给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j ...

  2. AGC001E BBQ Hard 组合、递推

    传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...

  3. [agc001E]BBQ Hard[组合数性质+dp]

    Description 传送门 Solution 题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i ...

  4. agc001E - BBQ Hard(dp 组合数)

    题意 题目链接 Sol 非常妙的一道题目. 首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, ...

  5. AtCoder AGC001E BBQ Hard (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...

  6. [AGC001E]BBQ Hard 组合数学

    题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...

  7. (浙江金华)Day 1 组合数计数

    目录 Day 1 组合计数 1.组合数 (1).C(n,m) 读作n选m,二项式系数 : (2).n个东西里选m个的方案数 不关心选的顺序: (3).二项式系数--->多项式系数: 2.组合数计 ...

  8. NOIp2018模拟赛三十八

    爆〇啦~ A题C题不会写,B题头铁写正解: 随手过拍很自信,出分一看挂成零. 若要问我为什么?gtmdsubtask! 神tm就一个subtask要么0分要么100,结果我预处理少了一点当场去世 难受 ...

  9. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

随机推荐

  1. 20155318 《网络攻防》Exp3 免杀原理与实践

    20155318 <网络攻防>Exp3 免杀原理与实践 基础问题 杀软是如何检测出恶意代码的? 基于特征来检测:恶意代码中一般会有一段有较明显特征的代码也就是特征码,如果杀毒软件检测到有程 ...

  2. Windows下TeX Live + Sublime Text 3 + Sumatra PDF配置

    本文写给我的师弟们,如何自己动手配置LaTeX环境(通过LeX Live + Sublime Text 3 + Sumatra PDF). 1.TeX Live 配置 首先从TeX Live 下载IS ...

  3. EZ 2017 12 30 2018noip第二次膜你赛

    去年的比赛了,然而今天才改好. 总体难度适中,有大佬AK. 主要是自己SB第二题没想出来,然后又是可怜的100来分. T1 一道二分+数学的题目. 我们可以二分叫的次数,然后用公式(等差数列,公差都是 ...

  4. StringUtils类方法归纳

    StringUtils方法概览 IsEmpty/IsBlank - checks if a String contains text IsEmpty/IsBlank – 检查字符串是否有内容. Tri ...

  5. libgdx学习记录4——舞台Stage

    libgdx总的来说是一个框架,而不是一个成熟的游戏引擎.Stage是其中一个比较好的封装,里面自带Camera.SpriteBatch等常用渲染绘图工具. 下面是一个简单的添加图片,并让镜头左右上下 ...

  6. Jmeter(二十二)_jenkins配置gitlab插件与ant插件

    Docker部署接口自动化持续集成环境第四步,代码上传到远程仓库! 接上文:脚本上传Gitlab 服务器中的Jenkins通过Gitlab插件读取远程Git远程仓库中的代码,然后通过ant插件进行构建 ...

  7. Asp.Net_Session跟Cookie的记住登陆名

    最近在做ASP.NET的项目时,接触到了登陆权限模块,所有总结了一下登陆时用到的知识和方法技巧. 如图说明:实现的效果如图,由于验证码验证比较简单这里就不介绍了 首先用代码生成器生成项目,以三层为例进 ...

  8. Unity3d Transform.forward和Vector3.forward的区别!

    在Unity中有两个forward,一个是Transform.forward一个是Vector3.forward. 对于Vector3来说,它只是缩写.没有其它任何含义. Vector3.forwar ...

  9. 了不起的Node.js--之三

    开发工具: 我使用的开发工具是Mac版的WebStorm,这个工具支持Nodejs,只要按照如下步骤设置即可以支持 1.WebStorm的开发界面,这个开发工具还是非常好用的. 2.WebStorm的 ...

  10. ubuntu 下配置 开发环境

    1. apache: sudo apt-get install apache2 安装好输入网址测试所否成功: http://localhost 2. mongo 已经安装好了 版本:2.4.8 ref ...