【agc001e】BBQ HARD(动态规划)
【agc001e】BBQ HARD(动态规划)
题面
题解
这些agc都是写的整场的题解,现在还是把其中一些题目单独拿出来发
这题可以说非常妙了。
我们可以把这个值看做在网格图上的一点\((-a[i],-b[i])\)走到\((a[j],b[j])\)的方案数。
而网格图走的方案数可以直接递推得到。
那么我们对于每个点把它的坐标取反到第三象限,然后对于整个坐标系计算走到每一个格子的总方案。
把所有\((a[i],b[i])\)的答案累加,再减去自己到自己的方案数,最后除二就是答案了。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 200200
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
const int py=2010;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int a[MAX],b[MAX],n,ans;
int f[4500][4500];
int inv[9000],jc[9000],jv[9000];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read(),b[i]=read();
for(int i=1;i<=n;++i)f[py-a[i]][py-b[i]]+=1;
for(int i=1;i<=py*2;++i)
for(int j=1;j<=py*2;++j)
add(f[i][j],f[i-1][j]),add(f[i][j],f[i][j-1]);
inv[0]=inv[1]=jc[0]=jv[0]=1;
for(int i=1;i<py<<2;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<py<<2;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<py<<2;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=n;++i)add(ans,f[a[i]+py][b[i]+py]);
for(int i=1;i<=n;++i)add(ans,MOD-C(2*(a[i]+b[i]),2*a[i]));
ans=1ll*ans*inv[2]%MOD;printf("%d\n",ans);
return 0;
}
【agc001e】BBQ HARD(动态规划)的更多相关文章
- [Agc001E] BBQ Hard
[Agc001E] BBQ Hard 题目大意 给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j ...
- AGC001E BBQ Hard 组合、递推
传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...
- [agc001E]BBQ Hard[组合数性质+dp]
Description 传送门 Solution 题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i ...
- agc001E - BBQ Hard(dp 组合数)
题意 题目链接 Sol 非常妙的一道题目. 首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, ...
- AtCoder AGC001E BBQ Hard (DP、组合计数)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...
- [AGC001E]BBQ Hard 组合数学
题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...
- (浙江金华)Day 1 组合数计数
目录 Day 1 组合计数 1.组合数 (1).C(n,m) 读作n选m,二项式系数 : (2).n个东西里选m个的方案数 不关心选的顺序: (3).二项式系数--->多项式系数: 2.组合数计 ...
- NOIp2018模拟赛三十八
爆〇啦~ A题C题不会写,B题头铁写正解: 随手过拍很自信,出分一看挂成零. 若要问我为什么?gtmdsubtask! 神tm就一个subtask要么0分要么100,结果我预处理少了一点当场去世 难受 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
随机推荐
- MyBatis在Oracle中插入数据并返回主键的问题解决
引言: 在MyBatis中,希望在Oracle中插入数据之时,同一时候返回主键值,而非插入的条数... 环境:MyBatis 3.2 , Oracle. Spring 3.2 SQL Snipp ...
- Java是如何读到hbase-site.xml 的内容的
Java是如何读到hbase-site.xml 的内容的 Java客户端使用的配置信息是被映射在一个HBaseConfiguration 实例中. HBaseConfiguration有一个工厂方法, ...
- 20155227《网络对抗》Exp7 网络欺诈防范
20155227<网络对抗>Exp7 网络欺诈防范 实践内容(3.5分) 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建 ...
- arm学习之汇编跳转指令总结
目前所知道的跳转指令有 b,bl,bep,bne.他们共同点是都是以b开头,首先从字面上分析:b:是Branch,表示分支.bl:是Branch Link表示带连接的分支.bep:Branch ,Eq ...
- 微信小程序之授权 wx.authorize
一. wx.authorize(Object object) 提前向用户发起授权请求.调用后会立刻弹窗询问用户是否同意授权小程序使用某项功能或获取用户的某些数据,但不会实际调用对应接口.如果用户之前已 ...
- kubernetes 集群新增node 节点并将应用分配到新增节点
第一章 1.重新安装一台kubernetes node节点,新增节点:192.168.1.192 网址:https://www.cnblogs.com/zoulixiang/p/9504324.htm ...
- docker之镜像管理命令
一.docker image 镜像管理命令 指令 描述ls 列出本机镜像build 构建镜像来自Dockerfilehistory 查看镜像历史inspect 显示一个或多个镜像详细信息pull 从镜 ...
- Java设置PPT的扇形图,与内嵌Excel联动
/** * 设置饼图的主方法 * @param slide 图表 * @param index 图标位置 * @param data 需要设置的数据 * @param titles 关联Excel的标 ...
- 阿里云ubuntu16.04安装ruby
0x0 准备 环境:阿里云轻量服务器ubuntu16.04 目的:安装beef需要的ruby环境 更新软件 sudo apt-get update sudo apt-get upgrade sudo ...
- 前后端同学必会的Linux基础命令
无论是前端还是后端同学,一些常用的linux命令还是必须要掌握的.发布版本.查看日志等等都会用到.以下是我简单的总结了一些简单又常用的命令,欢迎大家补充.希望能帮助到大家 基础篇 1.进入目录 cd ...