BZOJ3738 [Ontak2013]Kapitał 【扩展Lucas】
题目链接
题解
复习
同上
但是为了消去因子\(10\),处理\(2^k\)的时候,乘回\(2^{k_1}\)时,应同时计算\(5^{k_2}\)
如果\(k_1 \ge k_2\),乘上\(5^{k_2}\)的逆元
如果\(k_1 < k_2\),乘上\(5^{k_1}\)的逆元
处理\(5^k\)的时候同理
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<iomanip>
#include<cstdio>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2000005,maxm = 100005,INF = 0x3f3f3f3f;
LL pr[2],pk[2],fac[2],P,k1,k2,now;
inline LL qpow(LL a,LL b,LL p){
LL re = 1;
for (; b; b >>= 1,a = 1ll * a * a % p)
if (b & 1) re = 1ll * re * a % p;
return re;
}
inline void exgcd(LL a,LL b,LL&d ,LL& x,LL& y){
if (!b){d = a; x = 1; y = 0;}
else exgcd(b,a % b,d,y,x),y -= (a / b) * x;
}
inline LL inv(LL n,LL p){
LL d,x,y; exgcd(n,p,d,x,y);
return (x % p + p) % p;
}
inline LL Fac(LL n,LL P,LL p){
if (!n) return 1;
LL ans = 1;
if (n / P) ans = qpow(fac[now],n / P,P);
LL E = n % P;
for (LL i = 2; i <= E; i++)
if (i % p) ans = 1ll * ans * i % P;
return 1ll * ans * Fac(n / p,P,p) % P;
}
inline int C(LL n,LL m,int pk,int p){
now = (p == 5);
LL a = Fac(n,pk,p),b = Fac(m,pk,p),c = Fac(n - m,pk,p),ans;
ans = 1ll * a * inv(b,pk) % pk * inv(c,pk) % pk;
if (p == 2){
if (k1 >= k2)
ans = 1ll * ans * qpow(inv(5,pk),k2,pk) % pk * qpow(2,k1 - k2,pk) % pk;
else ans = 1ll * ans * qpow(inv(5,pk),k1,pk) % pk;
}
else {
if (k1 >= k2)
ans = 1ll * ans * qpow(inv(2,pk),k2,pk) % pk;
else ans = 1ll * ans * qpow(inv(2,pk),k1,pk) % pk * qpow(5,k2 - k1,pk) % pk;
}
return 1ll * ans * (P / pk) % P * inv(P / pk,pk) % P;
}
inline LL exlucas(LL n,LL m){
for (LL i = n; i; i /= 2) k1 += i / 2;
for (LL i = m; i; i /= 2) k1 -= i / 2;
for (LL i = n - m; i; i /= 2) k1 -= i / 2;
for (LL i = n; i; i /= 5) k2 += i / 5;
for (LL i = m; i; i /= 5) k2 -= i / 5;
for (LL i = n - m; i; i /= 5) k2 -= i / 5;
LL re = 0;
re = (re + C(n,m,pk[0],pr[0])) % P;
re = (re + C(n,m,pk[1],pr[1])) % P;
return re;
}
int main(){
LL N,M,K;
cin >> N >> M >> K;
pr[0] = 2; pr[1] = 5; pk[0] = pk[1] = P = 1;
REP(i,K) pk[0] *= 2,pk[1] *= 5,P *= 10;
fac[0] = 1; for (LL i = 2; i < pk[0]; i++) if (i % 2) fac[0] = 1ll * fac[0] * i % pk[0];
fac[1] = 1; for (LL i = 2; i < pk[1]; i++) if (i % 5) fac[1] = 1ll * fac[1] * i % pk[1];
cout << setfill('0') << setw(K) << exlucas(N + M,N) << endl;
return 0;
}
BZOJ3738 [Ontak2013]Kapitał 【扩展Lucas】的更多相关文章
- BZOJ3738 : [Ontak2013]Kapitał
$C_{N+M}^N=\frac{(N+M)!}{N!M!}$ 考虑求出$ans\bmod 10^9$的值 $10^9=2^9\times5^9$ 以$2^9$为例,先预处理出$1$..$2^9$中不 ...
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- BZOJ_2142_礼物_扩展lucas+组合数取模+CRT
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...
- 扩展CRT +扩展LUCAS
再次感谢zyf2000超强的讲解. 扩展CRT其实就是爆推式子,然后一路合并,只是最后一个式子上我有点小疑惑,但整体还算好理解. #include<iostream> #include&l ...
- BZOJ3129 SDOI2013方程(容斥原理+扩展lucas)
没有限制的话算一个组合数就好了.对于不小于某个数的限制可以直接减掉,而不大于某个数的限制很容易想到容斥,枚举哪些超过限制即可. 一般情况下n.m.p都是1e9级别的组合数没办法算.不过可以发现模数已经 ...
- Codeforces.100633J.Ceizenpok's formula(扩展Lucas)
题目链接 ->扩展Lucas //求C_n^k%m #include <cstdio> typedef long long LL; LL FP(LL x,LL k,LL p) { L ...
- P2467 [SDOI2010]地精部落 (dp+组合数)【扩展Lucas好难不会】
题目链接:传送门 题目: 题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其 ...
- 【learning】 扩展lucas定理
首先说下啥是lucas定理: $\binom n m \equiv \binom {n\%P} {m\%P} \times \binom{n/P}{m/P} \pmod P$ 借助这个定理,求$\bi ...
随机推荐
- 20155321 《网络攻防》 Exp2 后门原理与实践
20155321 <网络攻防> Exp2 后门原理与实践 实验内容 例举你能想到的一个后门进入到你系统中的可能方式? 我觉得人们在平时上网的时候可能会无意识地点击到一些恶意的网站,这些网站 ...
- 【php增删改查实例】第六节 - 部门管理模块(开始)
sql建表语句详见:https://www.jianshu.com/p/c88077ed9073 1.新建html模板 新建一个空白的txt文档,然后把后缀名改为.html 用任意一个编辑器打开,比如 ...
- 利用Github搭建自己的博客
教程链接:搭建个人博客 嘿嘿嘿!!一直想自己搭建博客的,一直没机会,这次终于把博客搭了起来.虽然只是一个壳子..套了别人的模板~不过还是很令人兴奋哟!总的来说,就按照这个教程一直往下走,其中有一个坑就 ...
- springmvc 结合 自动封装异常信息输出为json 报错 500内部服务器错误的原因
补充:还有一个原因是因为spring的对象没有被成功注入,例如 mapper没有被成功注入,抛出异常时在这种封装场景下将会抛出 500 服务器内部错误, 这种情况下要排查还是靠debug然后看看到底是 ...
- Security7:管理SQL Server Agent的权限
SQL Server Agent对象包括警报(Alert),操作员(Operator),Job,调度(Schedule)和代理(Proxy),SQL Server使用msdb系统数据库管理Agent ...
- 设计模式 笔记 生成器(建造者)模式 Builder
//---------------------------15/04/08---------------------------- //builder 生成器(建造者)模式---对象创建型模式 /* ...
- css小技巧::not()选择器的妙用
比如,要实现下面的效果(例如:一个列表的最后一项没有边框): See the Pen gmrGOV by 杨友存 (@Gavin-YYC) on CodePen. 一般的文档结构如下: <!-- ...
- Docker_容器化gitlab
Docker部署接口自动化持续集成环境第一步,容器化一个Gitlab! 1:开放防火墙端口 sudo yum install curl openssh-server openssh-clients p ...
- if 判断文件
#!/bin/sh#判断文件存在,判断是否为文件夹等testPath="/Volumes/MacBookProHD/Mr.Wen/08 shell命令"testFile=" ...
- Nginx安装负载均衡配置 fair check扩展
前言 本文主要是针对Nginx安装.负载均衡配置,以及fair智能选举.check后端节点检查扩展功能如何扩展,进行讲解说明. fair模块: upstream-fair,“公平的”Nginx 负载均 ...