主要思想是:

    初始时将起点加入队列。每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队。直到队列为空时算法结束。
    这个算法,简单的说就是队列优化的bellman-ford,利用了每个点不会更新次数太多的特点发明的此算法。
SPFA 在形式上和广度优先搜索非常类似,不同的是广度优先搜索中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是说一个点修改过其它的点之后,过了一段时间可能会获得更短的路径,于是再次用来修改其它的点,这样反复进行下去。
算法时间复杂度:O(kE)E是边数。K是常数,平均值为2
算法实现:
    dis[i]记录从起点si的最短路径,w[i][j]记录连接ij的边的长度。pre[v]记录前趋。
    team[1..n]为队列,头指针head,尾指针tail
    布尔数组exist[1..n]记录一个点是否现在存在在队列中。
    初始化:d[s]=0,d[v]=∞(vs),memset(exist,false,sizeof(exist));
    起点入队team[1]=s; head=0; tail=1;exist[s]=true;
    do
    {1、头指针向下移一位,取出指向的点u
    2、exist[u]=false;已被取出了队列
    3、foru相连的所有点v  //注意不要去枚举所有点,用数组模拟邻接表存储
       if (d[v]>d[u]+w[u][v])
         {   d[v]=d[u]+w[u][v];
             pre[v]=u;
             if (!exist[v]) //队列中不存在v点,v入队。
               {         //尾指针下移一位,v入队;
                    exist[v]=true;
                 }
          }
    }
    while (head < tail);
循环队列:
  采用循环队列能够降低队列大小,队列长度只需开到2*n+5即可。例题中的参考程序使用了循环队列。
完整代码:
 //spfa

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=0x7f;
bool vis[];
int map[][],dis[],queue[],path[];
int n,m,head=,tail=,now; void spfa(int x)
{
queue[head]=x;
vis[x]=true;
dis[x]=;
path[x]=x;
while(head<tail)
{
now=queue[head];
for(int i=;i<=n;i++)
{
if(dis[i]>dis[now]+map[now][i])
{
dis[i]=dis[now]+map[now][i];
path[i]=now;
if(vis[i]==false)
{
queue[tail++]=i;
vis[i]=true;
}
}
}
vis[now]=false;
head++;
}
}
void print(int st,int en)
{
int q[];
int tot=;
q[tot]=en;
tot++;
int temp=path[en];
while(temp!=st)
{
q[tot]=temp;
tot++;
temp=path[temp];
}
q[tot]=st;
for(int i=tot;i>=;i--)
{
if(i!=)
printf("%d -- >",q[i]);
else
printf("%d",q[i]);
}
cout<<endl;
}
int main()
{
memset(map,maxn,sizeof(map));
scanf("%d%d",&n,&m);
int he,ta,len;
for(int i=;i<=m;i++)
{
cin>>he>>ta>>len;
map[he][ta]=map[ta][he]=len;
}
memset(dis,maxn,sizeof(dis));
memset(vis,false,sizeof(vis));
memset(queue,,sizeof(queue));
int start,end;
scanf("%d%d",&start,&end);
spfa(start);
printf("%d\n",dis[end]);
print(start,end);
return ;
}

SPFA算法 O(kE)的更多相关文章

  1. 图论-最短路径--3、SPFA算法O(kE)

    SPFA算法O(kE) 主要思想是:     初始时将起点加入队列.每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队.直到队列为空时算法结束.     这个算 ...

  2. SPFA算法O(kE)

    SPFA算法O(kE) Dijkstra和Floyed是不断的试点.Dijkstra试最优点,Floyed试所有点. Bellman-Ford和SPFA是不断的试边.Bellman-Ford是盲目的试 ...

  3. 最短路径问题的Dijkstra和SPFA算法总结

    Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...

  4. SPFA算法

    SPFA算法 一.算法简介 SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法 ...

  5. 最短路径--SPFA 算法

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...

  6. Bellman-Ford & SPFA 算法——求解单源点最短路径问题

    Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...

  7. 最短路径算法之四——SPFA算法

    SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...

  8. SPFA 算法详解

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径 ...

  9. 最短路径算法 4.SPFA算法(1)

    今天所说的就是常用的解决最短路径问题最后一个算法,这个算法同样是求连通图中单源点到其他结点的最短路径,功能和Bellman-Ford算法大致相同,可以求有负权的边的图,但不能出现负回路.但是SPFA算 ...

随机推荐

  1. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  2. spring中bean配置和注入场景分析

    bean与spring容器的关系 Bean配置信息定义了Bean的实现及依赖关系,Spring容器根据各种形式的Bean配置信息在容器内部建立Bean定义注册表,然后根据注册表加载.实例化Bean,并 ...

  3. Mac安装WineHQ

    下载: (链接: https://pan.baidu.com/s/1o7NPhNk 密码: 5227) 安装: 先决条件: XQuartz>=2.7.7 系统设置允许未签名的包. 在https: ...

  4. Jquery 较好的效果

    仿google图片效果图片展示相册(jquery)的演示页面 产品相册展示插件slideshow多图可翻页 懒人建站 Jquery分享A Jquery分享B Jquery分享C Jquery分享D

  5. svn使用笔记

    一.checkout:第一次下载trunk里面的代码到本地 二.commit:提交一些修改* out of date : 本地版本号 < 服务器版本号* 如果过期,就update,可能会出现co ...

  6. oracel 复制A列的内容到列

    update jieguo1 t set t.chinesetablename =t.tablezhushi where length(t.chinesetablename) >= 15 and ...

  7. nginx在使用非80端口做反向代理【转】

    设置nginx反向代理,nginx在使用非80端口做反向代理时,浏览器访问发现返回302错误 upstream jboss{ server max_fails= fail_timeout=20s; s ...

  8. 【译】Asp.Net Identity与Owin,到底谁是谁?

    送给正在学习Asp.Net Identity的你 :-) 原文出自 trailmax 的博客AspNet Identity and Owin. Who is who. Recently I have ...

  9. 010_MAC下权限问题的那些事

    一. arun:bin arunyang$ sh catalina.sh start           #启动tomcat报一堆的没有权限~~~~(>_<)~~~~ 二.解决如下 aru ...

  10. centos6.5环境DNS-本地DNS服务器bind的搭建

    centos6.5环境DNS-本地DNS服务器bind的搭建 域名系统(英文:Domain Name System,缩写:DNS)是因特网的一项服务.它作为将域名和IP地址相互映射的一个分布式数据库, ...