主要思想是:

    初始时将起点加入队列。每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队。直到队列为空时算法结束。
    这个算法,简单的说就是队列优化的bellman-ford,利用了每个点不会更新次数太多的特点发明的此算法。
SPFA 在形式上和广度优先搜索非常类似,不同的是广度优先搜索中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是说一个点修改过其它的点之后,过了一段时间可能会获得更短的路径,于是再次用来修改其它的点,这样反复进行下去。
算法时间复杂度:O(kE)E是边数。K是常数,平均值为2
算法实现:
    dis[i]记录从起点si的最短路径,w[i][j]记录连接ij的边的长度。pre[v]记录前趋。
    team[1..n]为队列,头指针head,尾指针tail
    布尔数组exist[1..n]记录一个点是否现在存在在队列中。
    初始化:d[s]=0,d[v]=∞(vs),memset(exist,false,sizeof(exist));
    起点入队team[1]=s; head=0; tail=1;exist[s]=true;
    do
    {1、头指针向下移一位,取出指向的点u
    2、exist[u]=false;已被取出了队列
    3、foru相连的所有点v  //注意不要去枚举所有点,用数组模拟邻接表存储
       if (d[v]>d[u]+w[u][v])
         {   d[v]=d[u]+w[u][v];
             pre[v]=u;
             if (!exist[v]) //队列中不存在v点,v入队。
               {         //尾指针下移一位,v入队;
                    exist[v]=true;
                 }
          }
    }
    while (head < tail);
循环队列:
  采用循环队列能够降低队列大小,队列长度只需开到2*n+5即可。例题中的参考程序使用了循环队列。
完整代码:
 //spfa

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=0x7f;
bool vis[];
int map[][],dis[],queue[],path[];
int n,m,head=,tail=,now; void spfa(int x)
{
queue[head]=x;
vis[x]=true;
dis[x]=;
path[x]=x;
while(head<tail)
{
now=queue[head];
for(int i=;i<=n;i++)
{
if(dis[i]>dis[now]+map[now][i])
{
dis[i]=dis[now]+map[now][i];
path[i]=now;
if(vis[i]==false)
{
queue[tail++]=i;
vis[i]=true;
}
}
}
vis[now]=false;
head++;
}
}
void print(int st,int en)
{
int q[];
int tot=;
q[tot]=en;
tot++;
int temp=path[en];
while(temp!=st)
{
q[tot]=temp;
tot++;
temp=path[temp];
}
q[tot]=st;
for(int i=tot;i>=;i--)
{
if(i!=)
printf("%d -- >",q[i]);
else
printf("%d",q[i]);
}
cout<<endl;
}
int main()
{
memset(map,maxn,sizeof(map));
scanf("%d%d",&n,&m);
int he,ta,len;
for(int i=;i<=m;i++)
{
cin>>he>>ta>>len;
map[he][ta]=map[ta][he]=len;
}
memset(dis,maxn,sizeof(dis));
memset(vis,false,sizeof(vis));
memset(queue,,sizeof(queue));
int start,end;
scanf("%d%d",&start,&end);
spfa(start);
printf("%d\n",dis[end]);
print(start,end);
return ;
}

SPFA算法 O(kE)的更多相关文章

  1. 图论-最短路径--3、SPFA算法O(kE)

    SPFA算法O(kE) 主要思想是:     初始时将起点加入队列.每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队.直到队列为空时算法结束.     这个算 ...

  2. SPFA算法O(kE)

    SPFA算法O(kE) Dijkstra和Floyed是不断的试点.Dijkstra试最优点,Floyed试所有点. Bellman-Ford和SPFA是不断的试边.Bellman-Ford是盲目的试 ...

  3. 最短路径问题的Dijkstra和SPFA算法总结

    Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...

  4. SPFA算法

    SPFA算法 一.算法简介 SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法 ...

  5. 最短路径--SPFA 算法

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...

  6. Bellman-Ford & SPFA 算法——求解单源点最短路径问题

    Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...

  7. 最短路径算法之四——SPFA算法

    SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...

  8. SPFA 算法详解

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径 ...

  9. 最短路径算法 4.SPFA算法(1)

    今天所说的就是常用的解决最短路径问题最后一个算法,这个算法同样是求连通图中单源点到其他结点的最短路径,功能和Bellman-Ford算法大致相同,可以求有负权的边的图,但不能出现负回路.但是SPFA算 ...

随机推荐

  1. Hadoop生态圈-zookeeper的API用法详解

    Hadoop生态圈-zookeeper的API用法详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.测试前准备 1>.开启集群 [yinzhengjie@s101 ~] ...

  2. CSS 编码中超级有用的工具集合

    当你开发网站和 Web 应用时,使用合适的工具可以节省大量的时间.本文我将收集一些非常有用的 CSS 编码工具,希望对你有帮助. Pure CSS Pure 是来自雅虎的 CSS 框架,使用 Norm ...

  3. [机器学习&数据挖掘]机器学习实战决策树plotTree函数完全解析

    在看机器学习实战时候,到第三章的对决策树画图的时候,有一段递归函数怎么都看不懂,因为以后想选这个方向为自己的职业导向,抱着精看的态度,对这本树进行地毯式扫描,所以就没跳过,一直卡了一天多,才差不多搞懂 ...

  4. iOS 中nil,Nil,NULL,NSNull的区别

    类与对象的概念 类是对同一类事物高度的抽象,类中定义了这一类对象所应具有的静态属性(属性)和动态属性(方法). 对象是类的一个实例,是一个具体的事物. 类与对象是抽象与具体的关系. 类其实就是一种数据 ...

  5. OC中实现锁

    熟悉多线程开发的同学对锁肯定不陌生,但是OC中如何实现锁呢?给大家科普一下. 首先构建一个测试用的类,假想它是我们的一个共享资源,method1与method2是互斥的,代码如下: @implemen ...

  6. 洛谷 P1603 斯诺登的密码

    我一开始还没看懂非正规数字的意义,以为那里写的单词不算,蒙了好久,而且这题非常考验仔细程度,一不小心就RE,WA. 嗯,好像讲了些废话,那我们看看思路,我的做法和前面的大佬们有些不同,因为这题只有六个 ...

  7. RabbitMQ Queue一些常见模式

    懒队列:lazy Queue,即用到的时候才会加载,3.6.0及之后新添加的.当新添加数据后,不会将其放入到内存中,而是将其放入到磁盘中. 普通队列:1).in-memory,数据直接放入到内存中. ...

  8. Debian安装Nvidia最简单方法

    电脑配置: Dell本本 i7+gtx1050+8g 安装bumblebee: sudo apt install bumblebee-nvidia primus 以上会自动安装nvidia驱动. bu ...

  9. Quartus II 安装教程—FPGA入门教程【钛白Logic】

    Quartus II 工具安装一般分为两个部分,首先是开发工具本身的安装,其次就是器件库的安装,我们可以根据我们的需要选择相应的器件库来安装,这里我们使用Cyclone IV的FPGA,即安装Cycl ...

  10. 爬虫、框架scrapy

    阅读目录 一 介绍 二 安装 三 命令行工具 四 项目结构以及爬虫应用简介 五 Spiders 六 Selectors 七 Items 八 Item Pipeline 九 Dowloader Midd ...