描述

Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting them. They want to go from cave 1 to cave n. All the passages are difficult to pass. Passages are too small for two people to walk through simultaneously, and crossing a passage can make it even more difficult to pass for the next person. We define di as the difficulty of crossing passage i for the first time, and ai as the additional difficulty for the second time (e.g. the second person's difficulty is di+ai).
Your task is to find two (possibly identical) routes for Alice and Bob, so that their total difficulty is minimized.

For
example, in figure 1, the best solution is 1->2->4 for both Alice
and Bob, but in figure 2, it's better to use 1->2->4 for Alice
and 1->3->4 for Bob.

输入

There
will be at most 200 test cases. Each case begins with two integers n, m
(1<=n<=500, 1<=m<=2000), the number of caves and passages.
Each of the following m lines contains four integers u, v, di and ai
(1<=u,v<=n, 1<=di<=1000, 0<=ai<=1000). Note that there
can be multiple passages connecting the same pair of caves, and even
passages connecting a cave and itself.

输出

For each test case, print the case number and the minimal total difficulty.

样例输入

4 4
1 2 5 1
2 4 6 0
1 3 4 0
3 4 9 1
4 4
1 2 5 10
2 4 6 10
1 3 4 10
3 4 9 10

样例输出

Case 1: 23
Case 2: 24

题意

找两条从1到N的路使得总花费最小,一条路第一次走花费d,第二次走花费d+a

题解

每个点建两条边一条流量1花费d,一条流量1花费d+a

源点S=0,和1连一条边流量2花费0

汇点T=n+1,和n连一条边流量2花费0

然后跑一边最小费用最大流

代码

 #include<bits/stdc++.h>
using namespace std; const int N=1e5+;
const int M=2e5+;
const int INF=0x3f3f3f3f; int FIR[N],FROM[M],TO[M],CAP[M],FLOW[M],COST[M],NEXT[M],tote;
int pre[N],dist[N],q[];
bool vis[N];
int n,m,S,T;
void init()
{
tote=;
memset(FIR,-,sizeof(FIR));
}
void addEdge(int u,int v,int cap,int cost)
{
FROM[tote]=u;
TO[tote]=v;
CAP[tote]=cap;
FLOW[tote]=;
COST[tote]=cost;
NEXT[tote]=FIR[u];
FIR[u]=tote++; FROM[tote]=v;
TO[tote]=u;
CAP[tote]=;
FLOW[tote]=;
COST[tote]=-cost;
NEXT[tote]=FIR[v];
FIR[v]=tote++;
}
bool SPFA(int s, int t)
{
memset(dist,INF,sizeof(dist));
memset(vis,false,sizeof(vis));
memset(pre,-,sizeof(pre));
dist[s] = ;vis[s]=true;q[]=s;
int head=,tail=;
while(head!=tail)
{
int u=q[++head];vis[u]=false;
for(int v=FIR[u];v!=-;v=NEXT[v])
{
if(dist[TO[v]]>dist[u]+COST[v]&&CAP[v]>FLOW[v])
{
dist[TO[v]]=dist[u]+COST[v];
pre[TO[v]]=v;
if(!vis[TO[v]])
{
vis[TO[v]] = true;
q[++tail]=TO[v];
}
}
}
}
return pre[t]!=-;
}
void MCMF(int s, int t, int &cost, int &flow)
{
flow=;
cost=;
while(SPFA(s,t))
{
int Min = INF;
for(int v=pre[t];v!=-;v=pre[TO[v^]])
Min = min(Min, CAP[v]-FLOW[v]);
for(int v=pre[t];v!=-;v=pre[TO[v^]])
{
FLOW[v]+=Min;
FLOW[v^]-=Min;
cost+=COST[v]*Min;
}
flow+=Min;
}
}
int main()
{
int ca=;
while(scanf("%d%d",&n,&m)!= EOF)
{
init();
for(int i=,u,v,d,a;i<m;i++)
{
scanf("%d%d%d%d",&u,&v,&d,&a);
addEdge(u,v,,d);
addEdge(u,v,,d+a);
}
S=,T=n+;
addEdge(S,,,);
addEdge(n,T,,);
int cost,flow;
MCMF(S,T,cost,flow);
printf("Case %d: %d\n",++ca,cost);
}
return ;
}

TZOJ 4712 Double Shortest Paths(最小费用最大流)的更多相关文章

  1. SGU 185.Two shortest (最小费用最大流)

    时间限制:0.25s 空间限制:4M 题意: 在n(n<=400)个点的图中,找到并输出两条不想交的最短路.不存在输出“No sulotion”: Solution: 最小费用最大流 建图与po ...

  2. [poj] 3068 "Shortest" pair of paths || 最小费用最大流

    [原题](http://poj.org/problem?id=3068) 给一个有向带权图,求两条从0-N-1的路径,使它们没有公共点且边权和最小 . //是不是像传纸条啊- 是否可行只要判断最后最大 ...

  3. SGU185 Two shortest(最小费用最大流/最大流)

    题目求一张图两条边不重复的最短路. 一开始我用费用流做. 源点到1连容量2费用0的边:所有边,连u到v和v到u容量1费用cost的边. 总共最多会增广两次,比较两次求得的费用,然后输出路径. 然而死M ...

  4. CSU 1506 Problem D: Double Shortest Paths(最小费用最大流)

    题意:2个人从1走到n,假设一条路第一次走则是价值di,假设第二次还走这条路则须要价值di+ai,要你输出2个人到达终点的最小价值! 太水了!一条边建2次就OK了.第一次价值为di,第二次为ai+di ...

  5. TZOJ 1513 Farm Tour(最小费用最大流)

    描述 When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 &l ...

  6. CSU 1506 Double Shortest Paths

    1506: Double Shortest Paths Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 49  Solved: 5 Description ...

  7. UVA 12821 Double Shortest Paths

    Double Shortest PathsAlice and Bob are walking in an ancient maze with a lot of caves and one-way pa ...

  8. CSU 1506(最小费用最大流)

    传送门:Double Shortest Paths 题意:有两个人:给出路径之间第一个人走所需要的费用和第二个人走所需要的费用(在第一个人所需的 费用上再加上第二次的费用):求两个人一共所需要的最小费 ...

  9. poj 2351 Farm Tour (最小费用最大流)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17230   Accepted: 6647 Descri ...

随机推荐

  1. delphi treeview checkbox

    delphi treeview checkbox 最新版Berlin还没有带checkbox的treeview?

  2. 机器学习进阶-图像基本操作-边界补全操作 1.cv2.copyMakeBoder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REPLICATE) 进行边界的补零操作 2.cv2.BORDER_REPLICATE(边界补零复制操作)...

    1.cv2.copyMakeBoder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REPLICATE) 参数说明: i ...

  3. BBS--功能4:个人站点页面设计(ORM跨表与分组查询)

    查询: 日期归档查询 1 date_format ============date,time,datetime=========== create table t_mul_new(d date,t t ...

  4. 查看已打包app的entitlements文件内容

    执行以下命令: codesign -d --ent :- /path/to/the.app https://developer.apple.com/library/content/technotes/ ...

  5. Tomcat 7集群基于redis的session共享设置

    经过测试之后,发现是tomcat中redis相关jar包问题,替换jar包后A产品运行正常. tomcat/lib目录下将commons-pool2-2.1.jar.jedis-2.1.0.jar.t ...

  6. vim主题设定

    Vim的颜色主题在/usr/share/vim/vim74/colors文件夹里. 打开vim后在normal模式下输入“:colorscheme”查看当前的主题,修改主题使用命令“:colorsch ...

  7. iptables学习

    droidwall.sh #!/system/bin/sh IPTABLES=iptables BUSYBOX=busybox GREP=grep ECHO=echo # Try to find bu ...

  8. Spring格式化注解

    Spring Framework 3.0发布了.这里我们介绍其中的一个:用于格式化的注解.简介 Spring 3 提供了两个可以用于格式化数字.日期和时间的注解@NumberFormat和@DateT ...

  9. splunk + docker-compose 实现自定义 index

    splunk是一款非常优秀的运维管理平台.Splunk 是机器数据的引擎.使用 Splunk 可收集.索引和利用所有应用程序.服务器和设备生成的快速移动型计算机数据 . 使用 Splunking 处理 ...

  10. subline 相关

    ctrl + ` 输入命令: import urllib.request,os; pf = 'Package Control.sublime-package'; ipp = sublime.insta ...