2-KNN(K最邻近算法)
KNN基本思想:
1、事先存在已经分类好的样本数据(如分别在A类、B类、C类等)
2、计算待分类的数据(叫做新数据)与所有样本数据的距离
3、选择K个与新数据距离最近的的样本,并统计这K个样本所属的分类(如K=10,其中有3个为A,3个为B,4个为C)
4、将新数据归属于这K个样本中出现频率最高的那个类(则新数据可分为C类)
*******************************************************************************************************************************
KNN误判率:与判别所选的距离有关。
常见的距离有:欧式距离、曼哈顿距离、Mahalanobis距离等。
*******************************************************************************************************************************
算法改进:
1、KNN易受噪声影响,孤立点对分类效果影响较大,通常先进行滤波筛选
2、K的选取也会影响分类效果
3、样本数据分类不均匀,A类样本很大,B类样本很小,则容易出现误分类;可以采取加权的方式,距离越段,则权值越大。
改进的主要思想有:
1、基于组合分类器的KNN改进算法(做多个KNN分类器,然后通过投票法组合,得票最多的分类器结果做为最终组合KNN的输出)
2、基于核映射的KNN改进算法(映射到高维空间间,突出不同类别样本间的差异,或使其线性可分)
3、基于预聚类的KNN改进算法(计算新数据与每个聚类中心的距离,将距离最短的聚类看做为近邻点的集合,然后在该集合中找K个距离最近样本,然后在用KNN算法来分类)
*******************************************************************************************************************************
KNN主要用于文本分类、聚类分析、预测分析、降维等。
2-KNN(K最邻近算法)的更多相关文章
- k最邻近算法——使用kNN进行手写识别
上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的 ...
- k最邻近算法——加权kNN
加权kNN 上篇文章中提到为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权. 反函数 该方法最简单的形式是返回距离的倒数,比如距离d,权重1/d.有时候,完全一样或非常接 ...
- 001 KNN分类 最邻近算法
1.文件5.0,3.5,1.6,0.6,apple5.1,3.8,1.9,0.4,apple4.8,3.0,1.4,0.3,apple5.1,3.8,1.6,0.2,apple4.6,3.2,1.4, ...
- K最邻近算法(下)
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from skle ...
- [机器学习] ——KNN K-最邻近算法
KNN分类算法,是理论上比较成熟的方法,也是最简单的机器学习算法之一. 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别 ...
- Python实现kNN(k邻近算法)
Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...
- k邻近算法(KNN)实例
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实 ...
- <机器学习实战>读书笔记--k邻近算法KNN
k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定 ...
- 《机器学习实战》学习笔记一K邻近算法
一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...
随机推荐
- apt install yum失败
解决办法:sudo apt-get update
- Python 常用模块之re 正则表达式的使用
re模块用来使用正则表达式.正则表达式用来对字符串进行搜索的工作.我们最应该掌握正则表达式的查询,更改,删除的功能.特别是做爬虫的时候,re模块就显得格外重要. 1.查询 import re a = ...
- [AI]神经网络章1 神经网络基本工作原理
神经元细胞的数学计算模型 神经网络由基本的神经元组成,下图就是一个神经元的数学/计算模型,便于我们用程序来实现. 输入 (x1,x2,x3) 是外界输入信号,一般是一个训练数据样本的多个属性,比如,我 ...
- linux和普通文本的换行问题
情景一: 普通文本 vim操作换行 :%s#xxx#\n#g 情景二: linux环境换行 vim :%s#xxx#\r#g
- Flex 排序 SortField and Sort
部分代码 var arrayOfCat:ArrayCollection=outerDocument.getCagegory(); // 需要排序的数组 //创建SortField对象 var so ...
- Mac版Java安装与配置
一.下载并安装JDK http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 双击下载的 ...
- 深度学习中 epoch,[batch size], iterations概念解释
one epoch:所有的训练样本完成一次Forword运算以及一次BP运算 batch size:一次Forword运算以及BP运算中所需要的训练样本数目,其实深度学习每一次参数的更新所需要损失函数 ...
- 2018.10.31 NOIP模拟 一些情报(倍增)
传送门 题目并不难(想) 其实就是用倍增维护几个树上信息. 也就这么几个: 子树内最长链及其后继点. 子树内次长链及其后继点. 子树内第三场链(也就是dzyodzyodzyo口中鬼畜的次次长链) 点i ...
- yii2 控制器渲染
render() : 渲染一个 视图名并使用一个 布局返回到渲染结果. renderPartial() : 渲染一个 视图名并且不使用布局. renderAjax() : 渲染一个 视图名并且不使用布 ...
- oracle创建视图(view)
视图:是基于一个表或多个表或视图的逻辑表,本身不包含数据,通过它可以对表里面的数据进行查询和修改.视图基于的表称为基表,Oracle的数据库对象分为五种:表,视图,序列,索引和同义词. 视图是存储在数 ...