KNN基本思想:

1、事先存在已经分类好的样本数据(如分别在A类、B类、C类等)

2、计算待分类的数据(叫做新数据)与所有样本数据的距离

3、选择K个与新数据距离最近的的样本,并统计这K个样本所属的分类(如K=10,其中有3个为A,3个为B,4个为C)

4、将新数据归属于这K个样本中出现频率最高的那个类(则新数据可分为C类)

*******************************************************************************************************************************

KNN误判率:与判别所选的距离有关。

常见的距离有:欧式距离、曼哈顿距离、Mahalanobis距离等。

*******************************************************************************************************************************

算法改进:

1、KNN易受噪声影响,孤立点对分类效果影响较大,通常先进行滤波筛选

2、K的选取也会影响分类效果

3、样本数据分类不均匀,A类样本很大,B类样本很小,则容易出现误分类;可以采取加权的方式,距离越段,则权值越大。

改进的主要思想有:

1、基于组合分类器的KNN改进算法(做多个KNN分类器,然后通过投票法组合,得票最多的分类器结果做为最终组合KNN的输出)

2、基于核映射的KNN改进算法(映射到高维空间间,突出不同类别样本间的差异,或使其线性可分)

3、基于预聚类的KNN改进算法(计算新数据与每个聚类中心的距离,将距离最短的聚类看做为近邻点的集合,然后在该集合中找K个距离最近样本,然后在用KNN算法来分类)

*******************************************************************************************************************************

KNN主要用于文本分类、聚类分析、预测分析、降维等。

2-KNN(K最邻近算法)的更多相关文章

  1. k最邻近算法——使用kNN进行手写识别

    上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的 ...

  2. k最邻近算法——加权kNN

    加权kNN 上篇文章中提到为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权. 反函数 该方法最简单的形式是返回距离的倒数,比如距离d,权重1/d.有时候,完全一样或非常接 ...

  3. 001 KNN分类 最邻近算法

    1.文件5.0,3.5,1.6,0.6,apple5.1,3.8,1.9,0.4,apple4.8,3.0,1.4,0.3,apple5.1,3.8,1.6,0.2,apple4.6,3.2,1.4, ...

  4. K最邻近算法(下)

    import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from skle ...

  5. [机器学习] ——KNN K-最邻近算法

    KNN分类算法,是理论上比较成熟的方法,也是最简单的机器学习算法之一. 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别 ...

  6. Python实现kNN(k邻近算法)

    Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...

  7. k邻近算法(KNN)实例

    一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实 ...

  8. <机器学习实战>读书笔记--k邻近算法KNN

    k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定 ...

  9. 《机器学习实战》学习笔记一K邻近算法

     一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...

随机推荐

  1. grep如何进行正则表达式查找

    字符类 字符类的搜索:如果我想要搜寻 test 或 taste 这两个单字时,可以发现到,其实她们有共通的 't?st' 存在-这个时候,我可以这样来搜寻: [root@www ~]# grep -n ...

  2. eclipse自动添加javadoc注释

    参考文档: https://jingyan.baidu.com/article/36d6ed1f70ea9c1bce488350.html https://www.cnblogs.com/yangji ...

  3. HapMap

    HapMap五周年回顾 2011-01-12 | 作者: [关闭] 作者简介:曾长青,中国科学院北京基因组所研究员,博士生导师.CUSBEA奖学金.百人计划.杰出青年基金.首批新世纪百千万人才工程国家 ...

  4. tp5安装验证码

  5. [Robot Framework] 通过SikuliLibrary可以获取到图片,但是点击失效

    执行时,可以看到鼠标已经移动到图片上了,但是点击失效,日志也没有报错 后来发现是windows权限的问题. 通过打开Control Panel->System and Security-> ...

  6. spring boot 无法启动

    spring boot 使用内置tomcat 报错  : Unable to start embedded Tomcat servlet container Tomcat connector in f ...

  7. coocsCreator杂记

    判断是否继承 cc.isChildClassOf = function (subclass, superclass) { 获取所有super classes CCClass.getInheritanc ...

  8. H3 android 系统编译

    http://bbs.ickey.cn/group-topic-id-57981.html [Orange Pi PC试用体验]11编译android源码笔记 编译android和编译linux有点类 ...

  9. 金币(NOIP2015)

    先给题目:金币 又是很水的题,很简单,直接上代码: #include<bits/stdc++.h> using namespace std; int main(){ int n; scan ...

  10. Visual Studio 2015部署OpenCV

    Visual Studio 2015的安装破解及OpenCV的安装和部署 平台:win10 X64+VS2015专业版 X64:vs2015.pro_chs+OpenCV 3.X:opencv-3.4 ...