Ural 2036. Intersect Until You're Sick of It 计算几何
2036. Intersect Until You're Sick of It
题目连接:
http://acm.timus.ru/problem.aspx?space=1&num=2036
Description
Ural contests usually contain a lot of geometry problems. Many participants do not conceal their discontent with such disbalance. Still, we have decided not to break the tradition and give you an unbalanced contest. Let’s start!
Consider an iterative process for a set of points on a plane. Every iteration consists of three steps:
Draw a line through every pair of different points.
Find all intersections of all pairs of different non-parallel lines.
Merge the initial set of points with the set of intersection points and go to step one.
After each iteration, the number of points either increases or stays the same.
You are given a set of points. Iterations repeat while the number of points increases. How many points will be in the set after the end of this iterative process?
Input
The first line contains an integer n (1 ≤ n ≤ 100000). Further input describes n different points. For every point, you are given a pair of integer coordinates whose absolute value does not exceed 108.
Output
If the process is infinite, print “oo” (two lowercase Latin letters ‘o’), otherwise print the number of points in the set after the end of the process.
Sample Input
4
0 0
0 1
1 0
1 1
Sample Output
5
Hint
题意
给你n个点,然后进行下列操作:
1.两两点连线
2.找到所有不平行直线所构成的交点
3.把所有找到的点和原来的点合并,如果点数增加,再进行1操作;否则break
输出最后点的数量。
可能是无限多。
题解:
无限多的情况很多,我们来考虑特殊情况,即有解的:
显然所有点都是在一条直线上,这个答案是n
显然如果只有一个点不在直线上,这个答案也是n
有两个点不在直线上,那么答案可能是n,也有可能是n+1.
基本上情况就这些了,讨论一下,然后求解即可。
数据:
Anti-WA #51:
4
0 0
2 0
1 1
1 2
Answer: oo
Anti-WA #52:
4
0 0
1 2
2 2
3 0
Answer: oo
代码
#include <bits/stdc++.h>
using namespace std;
const int N=100010;
const int inf=1e9;
struct POINT
{
long long x;
long long y;
POINT(long long a=0, long long b=0) { x=a; y=b;} //constructor
bool operator<(const POINT &A)const{
if(A.x==x)return A.y<y;
return A.x<x;
}
};
long long multiply(POINT sp,POINT ep,POINT op)
{
return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
long long multiply(POINT A,POINT B,POINT C,POINT D)
{
long long x1 = A.x-B.x;
long long y1 = A.y-B.y;
long long x2 = C.x-D.x;
long long y2 = C.y-D.y;
return x1*y2-x2*y1;
}
POINT P[N];
int n;
int solve(POINT st)
{
vector<POINT> ans,ret;
if(st.x==0&&st.y==0)
{
return inf;
}
for(int i=1;i<=n;i++)
{
if(multiply(P[i],st,P[1])!=0) ans.push_back(P[i]);else ret.push_back(P[i]);
}
if(ans.size()<=1)
{
return n;
}
else
{
for(int i=2;i<ans.size();i++)
if(multiply(ans[0],ans[1],ans[i])!=0) return inf;
for(int i=0;i<ret.size();i++)
if(multiply(ret[i],ans[1],ans[0])==0)
return n;
if(ans.size()>2)
{
return inf;
}
else
{
long long t1=multiply(ans[0],st,P[1]),t2=multiply(ans[1],st,P[1]);
if(t1>0&&t2>0||t1<0&&t2<0)
{
return inf;
}
else
{
POINT pp;
int flag=1,f1=1,f2=1;
for(int i=0;i<ret.size();i++)
{
if(multiply(ret[i],ans[1],ans[0])<0) f1=0;
if(multiply(ret[i],ans[1],ans[0])>0) f2=0;
}
if(f1||f2) flag=0;
return n+flag;
}
}
}
}
long long X(POINT A,POINT B){
return A.x*B.y-A.y*B.x;
}
long long sq(long long A){
return A*A;
}
long long dis(POINT A,POINT B){
return sq(A.x-B.x)+sq(A.y-B.y);
}
bool ok4(){
long long tmp = multiply(P[1],P[2],P[3],P[4]);
if(tmp!=0)return 0;
tmp = multiply(P[1],P[2],P[3]);
if(tmp==0)return 0;
long long dis1 = dis(P[1],P[2]);
long long dis2 = dis(P[3],P[4]);
if(dis1!=dis2)return 0;
return 1;
}
bool ok14(){
long long tmp = multiply(P[1],P[2],P[3]);
if(tmp==0)return 1;
long long dis1 = dis(P[1],P[2]);
long long dis2 = dis(P[3],P[4]);
if(dis1==dis2)return 1;
return 0;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%I64d%I64d",&P[i].x,&P[i].y);
}
for(int i=2;i<=n;i++)
P[i].x-=P[1].x,P[i].y-=P[1].y;
P[1].x=P[1].y=0;
int tmp=inf;
if(n<=3)
{
printf("%d\n",n);
return 0;
}
if(n==4){
sort(P+1,P+1+n);
do{
if(ok4()){
printf("5\n");
return 0;
}
}while(next_permutation(P+1,P+1+n));
sort(P+1,P+1+n);
do{
if(ok14()){
printf("4\n");
return 0;
}
}while(next_permutation(P+1,P+1+n));
printf("oo\n");
return 0;
}
if(n<=5)
{
for(int o=2;o<=n;o++)
{
tmp=min(tmp,solve(P[o]));
}
}
else
{
int flag=0;
POINT stt;
stt.x=stt.y=0;
for(int i=2;i<=6;i++)
{
for(int j=i+1;j<=6;j++)
{
for(int k=j+1;k<=6;k++)
if(multiply(P[i],P[j],P[1])==0&&multiply(P[i],P[k],P[1])==0)
{
stt=P[i];
flag=1;
break;
}
if(flag) break;
}
if(flag) break;
}
tmp=solve(stt);
}
if(tmp==inf) printf("oo\n");else printf("%d\n",tmp);
return 0;
}
Ural 2036. Intersect Until You're Sick of It 计算几何的更多相关文章
- URAL 2036 Intersect Until You're Sick of It 形成点的个数 next_permutation()函数
A - Intersect Until You're Sick of It Time Limit:500MS Memory Limit:65536KB 64bit IO Format: ...
- URAL 2025. Line Fighting (math)
2025. Line Fighting Time limit: 1.0 second Memory limit: 64 MB Boxing, karate, sambo- The audience i ...
- LINQ to SQL语句(8)之Concat/Union/Intersect/Except
适用场景:对两个集合的处理,例如追加.合并.取相同项.相交项等等. Concat(连接) 说明:连接不同的集合,不会自动过滤相同项:延迟. 1.简单形式: var q = ( from c in db ...
- 【oracle】union、union all、intersect、minus 的用法及区别
一.union与union all 首先建两个view create or replace view test_view_1 as as c from dual union as c from dua ...
- oracle之集合操作函数---minus、union、intersect
集合操作符专门用于合并多条select语句的结果,包括:UNION,UNION ALL,INTERSECT,MINUS.当使用集合操作函数时,需保证数据集的字段数据类型和数目一致. 使用集合操作符需要 ...
- LINQ的Intersect方法
找到两个集合中交集部分: source code: IEnumerable<int> a = new List<int>{ { }, { }, { } }; IEnumerab ...
- Linq连接查询之左连接、右连接、内连接、全连接、交叉连接、Union合并、Concat连接、Intersect相交、Except与非查询
内连接查询 内连接与SqL中inner join一样,即找出两个序列的交集 Model1Container model = new Model1Container(); //内连接 var query ...
- List之Union(),Intersect(),Except()
http://www.cnblogs.com/qinpengming/archive/2012/12/03/2800202.html List之Union(),Intersect(),Except() ...
- Sql中的并(UNION)、交(INTERSECT)、差(minus)、除去(EXCEPT)详解
UNION 查询选修了180101号或180102号课程或二者都选修了的学生学号.课程号和成绩. (SELECT 学号, 课程号, 成绩 FROM 学习 WHERE 课程号='180101' ...
随机推荐
- Lua程序设计(三)面向对象实现一个简单的类
1.Lua面向对象实现步骤 ①创建一个全局表(称之为元表) ②设置这个元表的__index值(值通常为元表自己,这样就能通过__index查找到对应的属性和方法)__index 赋值其实是一个func ...
- meeting,symposium,seminar 等区别
meeting,symposium,seminar 等区别 会议分类的方式可说是不胜枚举,这点初步由英文对会议名称的写法,就可看出端倪,像是Assembly,Caucus,Colloquium, Co ...
- html5 canvas loading(这可怕的编辑器,自动把我的canvas转义了)---以前收藏的整理了一下
/* super inefficient right now, could be improved */ var c = document.getElementById('canvasload'), ...
- javascript私有方法揭示为公有方法
揭示模式可用于将私有方法暴露为公共方法.当为了对象的运转而将所有功能放置在一个对象中以及想尽可能地保护该对象,这种揭示模式就非常有用. 板栗: var myarray; (function(){ va ...
- Repeater控件的分页实现
本文讲解Repeater控件与PagedDataSource相结合实现其分页功能.PagedDataSource 类封装那些允许数据源控件(如 DataGrid.GridView)执行分页操作的属性. ...
- ListView position
在使用listview的时候,我们经常会在listview的监听事件中,例如OnItemClickListener(onItemClick)中,或listview的adapter中(getView.g ...
- 云计算--hdfs dfs 命令
在hadoop安装目录下:/hadoop2/hadoop-2.7.3 1.创建目录 bin/hdfs dfs -mkdir /user bin/hdfs dfs -mkdir /user/<us ...
- Android Studio引用第三方jar包(例如:使用LitePal)
如何使用LitePal的教程网上很多,不过对于新手,这些教程中遗漏了将第三方jar包拷贝到app->libs路径下后,还需要add as library. 下载LitePal 这时操作步骤如下: ...
- MongoDB存储基础教程
一.MongoDB简介 1. mangodb是一种基于分布式.文件存储的非关系型数据库 2. C++写的,性能高 3. 为web应用提供可扩展的高性能数据存储解决方案 4. 所支持的格式是json格式 ...
- centos:SSH登录时间很慢
vi /etc/ssh/sshd_config GSSAPIAuthentication 改为 no 开启UseDNS,值改为 no service sshd restart