写在前面

  Semaphore是一个计数信号量,它的本质是一个"共享锁"。

  信号量维护了一个信号量许可集。线程可以通过调用acquire()来获取信号量的许可;当信号量中有可用的许可时,线程能获取该许可;否则线程必须等待,直到有可用的许可为止。 线程可以通过release()来释放它所持有的信号量许可。

// 创建具有给定的许可数和非公平的公平设置的 Semaphore。
Semaphore(int permits)
// 创建具有给定的许可数和给定的公平设置的 Semaphore。
Semaphore(int permits, boolean fair) // 从此信号量获取一个许可,在提供一个许可前一直将线程阻塞,否则线程被中断。
void acquire()
// 从此信号量获取给定数目的许可,在提供这些许可前一直将线程阻塞,或者线程已被中断。
void acquire(int permits)
// 从此信号量中获取许可,在有可用的许可前将其阻塞。
void acquireUninterruptibly()
// 从此信号量获取给定数目的许可,在提供这些许可前一直将线程阻塞。
void acquireUninterruptibly(int permits)
// 返回此信号量中当前可用的许可数。
int availablePermits()
// 获取并返回立即可用的所有许可。
int drainPermits()
// 返回一个 collection,包含可能等待获取的线程。
protected Collection<Thread> getQueuedThreads()
// 返回正在等待获取的线程的估计数目。
int getQueueLength()
// 查询是否有线程正在等待获取。
boolean hasQueuedThreads()
// 如果此信号量的公平设置为 true,则返回 true。
boolean isFair()
// 根据指定的缩减量减小可用许可的数目。
protected void reducePermits(int reduction)
// 释放一个许可,将其返回给信号量。
void release()
// 释放给定数目的许可,将其返回到信号量。
void release(int permits)
// 返回标识此信号量的字符串,以及信号量的状态。
String toString()
// 仅在调用时此信号量存在一个可用许可,才从信号量获取许可。
boolean tryAcquire()
// 仅在调用时此信号量中有给定数目的许可时,才从此信号量中获取这些许可。
boolean tryAcquire(int permits)
// 如果在给定的等待时间内此信号量有可用的所有许可,并且当前线程未被中断,则从此信号量获取给定数目的许可。
boolean tryAcquire(int permits, long timeout, TimeUnit unit)
// 如果在给定的等待时间内,此信号量有可用的许可并且当前线程未被中断,则从此信号量获取一个许可。
boolean tryAcquire(long timeout, TimeUnit unit)

Semaphore数据结构

 

  从图中可以看出:
  (01) 和"ReentrantLock"一样,Semaphore也包含了sync对象,sync是Sync类型;而且,Sync是一个继承于AQS的抽象类。
  (02) Sync包括两个子类:"公平信号量"FairSync 和 "非公平信号量"NonfairSync。sync是"FairSync的实例",或者"NonfairSync的实例";默认情况下,sync是NonfairSync(即,默认是非公平信号量)。

Semaphore源码分析

  Semaphore是通过共享锁实现的。根据共享锁的获取原则,Semaphore分为"公平信号量"和"非公平信号量"。

  "公平信号量"和"非公平信号量"的区别

  "公平信号量"和"非公平信号量"的释放信号量的机制是一样的!不同的是它们获取信号量的机制:线程在尝试获取信号量许可时,对于公平信号量而言,如果当前线程不在CLH队列的头部,则排队等候;而对于非公平信号量而言,无论当前线程是不是在CLH队列的头部,它都会直接获取信号量。该差异具体的体现在,它们的tryAcquireShared()函数的实现不同。

  "公平信号量"类

static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L;
FairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
for (;;) {
if (hasQueuedPredecessors())
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}

"非公平信号量"类

static final class NonfairSync extends Sync {
private static final long serialVersionUID = -2694183684443567898L;
NonfairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
}

1. 信号量构造函数

public Semaphore(int permits) {
sync = new NonfairSync(permits);
}
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

2. 1公平信号量获取和释放

public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public void acquire(int permits) throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireSharedInterruptibly(permits);
}

信号量中的acquire()获取函数,实际上是调用的AQS中的acquireSharedInterruptibly()。

public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
// 如果线程是中断状态,则抛出异常。
if (Thread.interrupted())
throw new InterruptedException();
// 否则,尝试获取“共享锁”;获取成功则直接返回,获取失败,则通过doAcquireSharedInterruptibly()获取。
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}

Semaphore中”公平锁“对应的tryAcquireShared()实现如下:

protected int tryAcquireShared(int acquires) {
for (;;) {
// 判断“当前线程”是不是CLH队列中的第一个线程线程,
// 若是的话,则返回-1。
if (hasQueuedPredecessors())
return -1;
// 设置“可以获得的信号量的许可数”
int available = getState();
// 设置“获得acquires个信号量许可之后,剩余的信号量许可数”
int remaining = available - acquires;
// 如果“剩余的信号量许可数>=0”,则设置“可以获得的信号量许可数”为remaining。
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}

说明:tryAcquireShared()的作用是尝试获取acquires个信号量许可数。对于Semaphore而言,state表示的是“当前可获得的信号量许可数”。

private void doAcquireSharedInterruptibly(long arg)
throws InterruptedException {
// 创建”当前线程“的Node节点,且Node中记录的锁是”共享锁“类型;并将该节点添加到CLH队列末尾。
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
// 获取上一个节点。
// 如果上一节点是CLH队列的表头,则”尝试获取共享锁“。
final Node p = node.predecessor();
if (p == head) {
long r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
// 当前线程一直等待,直到获取到共享锁。
// 如果线程在等待过程中被中断过,则再次中断该线程(还原之前的中断状态)。
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}

说明:tryAcquireShared()的作用是尝试获取ac说明:doAcquireSharedInterruptibly()会使当前线程一直等待,直到当前线程获取到共享锁(或被中断)才返回。
(01) addWaiter(Node.SHARED)的作用是,创建”当前线程“的Node节点,且Node中记录的锁的类型是”共享锁“(Node.SHARED);并将该节点添加到CLH队列末尾。
(02) node.predecessor()的作用是,获取上一个节点。如果上一节点是CLH队列的表头,则”尝试获取共享锁“。
(03) shouldParkAfterFailedAcquire()的作用和它的名称一样,如果在尝试获取锁失败之后,线程应该等待,则返回true;否则,返回false。
(04) 当shouldParkAfterFailedAcquire()返回ture时,则调用parkAndCheckInterrupt(),当前线程会进入等待状态,直到获取到共享锁才继续运行。
doAcquireSharedInterruptibly()中的shouldParkAfterFailedAcquire()。quires个信号量许可数。对于Semaphore而言,state表示的是“当前可获得的信号量许可数”。

2.2 公平信号量的释放

public void release() {
sync.releaseShared(1);
}
public void release(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.releaseShared(permits);
}

信号量的releases()释放函数,实际上是调用的AQS中的releaseShared()。

public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}

说明:releaseShared()的目的是让当前线程释放它所持有的共享锁。它首先会通过tryReleaseShared()去尝试释放共享锁。尝试成功,则直接返回;尝试失败,则通过doReleaseShared()去释放共享锁。

protected final boolean tryReleaseShared(int releases) {
for (;;) {
// 获取“可以获得的信号量的许可数”
int current = getState();
// 获取“释放releases个信号量许可之后,剩余的信号量许可数”
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
// 设置“可以获得的信号量的许可数”为next。
if (compareAndSetState(current, next))
return true;
}
}

如果tryReleaseShared()尝试释放共享锁失败,则会调用doReleaseShared()去释放共享锁。doReleaseShared()的源码如下:

private void doReleaseShared() {
for (;;) {
// 获取CLH队列的头节点
Node h = head;
// 如果头节点不为null,并且头节点不等于tail节点。
if (h != null && h != tail) {
// 获取头节点对应的线程的状态
int ws = h.waitStatus;
// 如果头节点对应的线程是SIGNAL状态,则意味着“头节点的下一个节点所对应的线程”需要被unpark唤醒。
if (ws == Node.SIGNAL) {
// 设置“头节点对应的线程状态”为空状态。失败的话,则继续循环。
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue;
// 唤醒“头节点的下一个节点所对应的线程”。
unparkSuccessor(h);
}
// 如果头节点对应的线程是空状态,则设置“文件点对应的线程所拥有的共享锁”为其它线程获取锁的空状态。
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
// 如果头节点发生变化,则继续循环。否则,退出循环。
if (h == head) // loop if head changed
break;
}
}

说明:doReleaseShared()会释放“共享锁”。它会从前往后的遍历CLH队列,依次“唤醒”然后“执行”队列中每个节点对应的线程;最终的目的是让这些线程释放它们所持有的信号量。

3 非公平信号量获取

Semaphore中的非公平信号量是NonFairSync。在Semaphore中,“非公平信号量许可的释放(release)”与“公平信号量许可的释放(release)”是一样的。
不同的是它们获取“信号量许可”的机制不同,下面是非公平信号量获取信号量许可的代码。

非公平信号量的tryAcquireShared()实现如下:

protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
// 设置“可以获得的信号量的许可数”
int available = getState();
// 设置“获得acquires个信号量许可之后,剩余的信号量许可数”
int remaining = available - acquires;
// 如果“剩余的信号量许可数>=0”,则设置“可以获得的信号量许可数”为remaining。
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}

说明:非公平信号量的tryAcquireShared()调用AQS中的nonfairTryAcquireShared()。而在nonfairTryAcquireShared()的for循环中,它都会直接判断“当前剩余的信号量许可数”是否足够;足够的话,则直接“设置可以获得的信号量许可数”,进而再获取信号量。而公平信号量的tryAcquireShared()中,在获取信号量之前会通过if (hasQueuedPredecessors())来判断“当前线程是不是在CLH队列的头部”,是的话,则返回-1。

Semaphore示例

public class SemaphoreTest1 {
private static final int SEM_MAX = 10;
public static void main(String[] args) {
Semaphore sem = new Semaphore(SEM_MAX);
new MyThread(sem, 5).start();
new MyThread(sem, 4).start();
new MyThread(sem, 7).start();
}
}
class MyThread extends Thread {
private volatile Semaphore sem; // 信号量
private int count; // 申请信号量的大小 MyThread(Semaphore sem, int count) {
this.sem = sem;
this.count = count;
}
public void run() {
try {
// 从信号量中获取count个许可
sem.acquire(count); Thread.sleep(2000);
System.out.println(Thread.currentThread().getName() + " acquire count="+count);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 释放给定数目的许可,将其返回到信号量。
sem.release(count);
System.out.println(Thread.currentThread().getName() + " release " + count + "");
}
}
}
Thread- acquire count=
Thread- acquire count=
Thread- release
Thread- release
Thread- acquire count=
Thread- release

结果说明:信号量sem的许可总数是10个;共3个线程,分别需要获取的信号量许可数是5,4,7。前面两个线程获取到信号量的许可后,sem中剩余的可用的许可数是1;因此,最后一个线程必须等前两个线程释放了它们所持有的信号量许可之后,才能获取到7个信号量许可。

j.u.c系列(10)---之并发工具类:Semaphore的更多相关文章

  1. 封装一个简单好用的打印Log的工具类And快速开发系列 10个常用工具类

    快速开发系列 10个常用工具类 http://blog.csdn.net/lmj623565791/article/details/38965311 ------------------------- ...

  2. 30行自己写并发工具类(Semaphore, CyclicBarrier, CountDownLatch)是什么体验?

    30行自己写并发工具类(Semaphore, CyclicBarrier, CountDownLatch)是什么体验? 前言 在本篇文章当中首先给大家介绍三个工具Semaphore, CyclicBa ...

  3. java多线程10:并发工具类CountDownLatch、CyclicBarrier和Semaphore

    在JDK的并发包(java.util.concurrent下)中给开发者提供了几个非常有用的并发工具类,让用户不需要再去关心如何在并发场景下写出同时兼顾线程安全性与高效率的代码. 本文分别介绍Coun ...

  4. Android快速开发系列 10个常用工具类

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/38965311,本文出自[张鸿洋的博客] 打开大家手上的项目,基本都会有一大批的辅 ...

  5. 【转】 Android快速开发系列 10个常用工具类 -- 不错

    原文网址:http://blog.csdn.net/lmj623565791/article/details/38965311 转载请标明出处:http://blog.csdn.net/lmj6235 ...

  6. 并发工具类——Semaphore

    本博客系列是学习并发编程过程中的记录总结.由于文章比较多,写的时间也比较散,所以我整理了个目录贴(传送门),方便查阅. 并发编程系列博客传送门 Semaphore([' seməf :(r)])的主要 ...

  7. Java并发工具类Semaphore应用实例

    package com.thread.test.thread; import java.util.Random; import java.util.concurrent.*; /** * Semaph ...

  8. Java多线程并发工具类-信号量Semaphore对象讲解

    Java多线程并发工具类-Semaphore对象讲解 通过前面的学习,我们已经知道了Java多线程并发场景中使用比较多的两个工具类:做加法的CycliBarrier对象以及做减法的CountDownL ...

  9. 【重学Java】多线程进阶(线程池、原子性、并发工具类)

    线程池 线程状态介绍 当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态.线程对象在不同的时期有不同的状态.那么Java中的线程存在哪几种状态呢?Java中的线程 状态被定 ...

  10. j.u.c系列(11)---之并发工具类:Exchanger

    写在前面 前面三篇博客分别介绍了CyclicBarrier.CountDownLatch.Semaphore,现在介绍并发工具类中的最后一个Exchange.Exchange是最简单的也是最复杂的,简 ...

随机推荐

  1. 20155238 2016-2017-2 《Java程序设计》第五周学习总结

    教材学习内容总结 Java语言中所有的错误都会包装为对象.使用try.catch可以对对象做处理. 设计错误对象都继承自java.lang.Throwable类.Throwable定义了取得错误信息, ...

  2. 从字节码的角度看Java内部类与外部类的互相访问

    Java中non-static内部类为何可以访问外部类的变量?Java中外部类又为何可以访问内部类的private变量?这两个问题困扰过我一段时间,查了一些网上的答案,大多从“闭包”概念入手,理解起来 ...

  3. Anaconda+django写出第一个web app(九)

    今天来学习外键的使用,用外键来连接数据库中的两个表. 当我们的tutorials非常多的时候,目前的显示方式就会使得页面非常凌乱.我们可以考虑把这些教程分为不同的系列,页面只显示标题以及概要等信息,进 ...

  4. Maven部署dao工程到私服上——(十三)

    1.修改settings.xml 需要在客户端即(部署dao工程)的电脑上配置 maven环境,并修改 settings.xml 文件,配置连接私服的用户和密码 . 此用户名和密码用于私服校验,因为私 ...

  5. ubuntu12.04安装maven

    step: 1,确认已经安装jdk, java --version 2,下载apache-maven-3.3.9 下载地址:http://maven.apache.org/download.cgi 3 ...

  6. python3 str.format()的使用

    基本格式 {字段名!转换字段:格式说明符} 字段名:省略:数字:变量名 'name is {}, age is {}'.format('peter',25) 'name is {1}, age is ...

  7. Android 应用安全风险与防范

    代码混淆 Android开发除了部分功能采用C/C++编码外,其余主要都是采用Java进行编码开发功能.Java应用非常容易被反编译,Android自然也不例外.只要利用apktool等类似的反编译工 ...

  8. laravel 辅助函数

    数组&对象 1.array_divide() array_divide 函数返回两个数组,一个包含原始数组的健,另一个包含原始数组的值 [$keys, $values] = array_div ...

  9. .NetCore中如何实现权限控制 基于Claim角色、策略、基于Claim功能点处理

    .NetCore中如果实现权限控制的问题,当我们访问到一个Action操作的时候,我们需要进行权限控制 基于claims 角色控制 基于角色控制总觉得范围有点过大,而且控制起来感觉也不是太好,举一个例 ...

  10. CSS渐变之CSS3 gradient在Firefox3.6下的使用

    一.引子 Firefox3.6包含了许多CSS的改进,本文将向您展示如果使用CSS渐变. 如果你正在运行的Firefox 3.6的最新测试版,你应该看看我们的互动演示,并查看相应的代码.使用单选按钮来 ...