The Cat in the Hat 

Background

(An homage to Theodore Seuss Geisel)

The Cat in the Hat is a nasty creature,
But the striped hat he is wearing has a rather nifty feature.

With one flick of his wrist he pops his top off.

Do you know what's inside that Cat's hat?
A bunch of small cats, each with its own striped hat.

Each little cat does the same as line three,
All except the littlest ones, who just say ``Why me?''

Because the littlest cats have to clean all the grime,
And they're tired of doing it time after time!

The Problem

A clever cat walks into a messy room which he needs to clean. Instead of doing the work alone, it decides to have its helper cats do the work. It keeps its (smaller) helper cats inside its hat. Each helper cat also has helper cats in its own hat, and so on. Eventually, the cats reach a smallest size. These smallest cats have no additional cats in their hats. These unfortunate smallest cats have to do the cleaning.

The number of cats inside each (non-smallest) cat's hat is a constant, N. The height of these cats-in-a-hat is  times the height of the cat whose hat they are in.

The smallest cats are of height one; 
these are the cats that get the work done.

All heights are positive integers.

Given the height of the initial cat and the number of worker cats (of height one), find the number of cats that are not doing any work (cats of height greater than one) and also determine the sum of all the cats' heights (the height of a stack of all cats standing one on top of another).

The Input

The input consists of a sequence of cat-in-hat specifications. Each specification is a single line consisting of two positive integers, separated by white space. The first integer is the height of the initial cat, and the second integer is the number of worker cats.

A pair of 0's on a line indicates the end of input.

The Output

For each input line (cat-in-hat specification), print the number of cats that are not working, followed by a space, followed by the height of the stack of cats. There should be one output line for each input line other than the ``0 0'' that terminates input.

Sample Input

216 125
5764801 1679616
0 0

Sample Output

31 671
335923 30275911

下面这些,不是我翻译的。。。可以借鉴

一只神奇聪明猫走进了一间乱七八糟的房间,他不想自己动手收拾,他決定要找帮手來工作。于是他从他的帽子中变出了N只小猫來帮他(变出來的猫,高度为原來猫的 1/(N+1) )。這些小猫也有帽子,所以每一只小猫又从他的帽子中变出N隻小小猫來帮他。如此一直下去,直到这些小小小....猫小到不能再小(高度=1),他们的帽子无法再变出更小的猫來帮忙,而这些最小的猫只得动手打扫房间。注意:所有猫的高度都是正整数。

在这个问题中,给你一开始那只猫的高度,以及最后动手工作的猫的数目(也就是高度为1的貓的数目)。要请你求出有多少只猫是沒有在工作的,以及所有猫的高度的总和。

hight number
   216        1
     36        5
       6      25
       1    125

N=5;

671=216*1+36*5+6*25+1*125

N^n=number

(N+1)^n=hight

lg(n)/lg(n+1)=lg(number)/lg(hgiht)

于是用二分查找算出N即可,条件就写成了fabs(lg(n)*lg(hgiht)-lg(number)*lg(n+1)< EPS)

参考http://blog.csdn.net/frankiller/article/details/7726744

 #include <cstdio>
#include <iostream>
#include <cmath>
using namespace std; #define EPS 1e-9 int main()
{
int hight, num;
int left, right, mid;
int x, y;
while(scanf("%d %d", &hight, &num) && (hight+num))
{
left = ;
right = ;
while(left)
{
mid = (left + right) / ;
///这就是在解方程,得到的mid就是 N
if(fabs( log(mid)*log(hight) - log(mid+)*log(num)) <= EPS) ///lg(n)/lg(n+1)可能等于0 ... N=1
break;
if(log(mid)*log(hight) - log(mid+)*log(num) > )
right = mid;
else
left = mid;
} ///x是计算,除去第一只猫,其余猫的数量,y是计算总高度
x = ;
y = hight;
left = ;
while(hight > )
{
hight /= (+mid);
left *= mid;
x += left;
y += hight*left;
}
printf("%d %d\n", x-num+, y);
} return ;
}

uva 107 - The Cat in the Hat的更多相关文章

  1. UVa 107 - The Cat in the Hat (找规律,注意精度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. 杂题 UVAoj 107 The Cat in the Hat

     The Cat in the Hat  Background (An homage to Theodore Seuss Geisel) The Cat in the Hat is a nasty c ...

  3. The Cat in the Hat POJ - 1289

    题意:给你来两个数A,B  .其中A=(n+1)k, B=nk    输出:(nk-1)/(n-1) 和  ∏ (n+1)k-i ni 思路:关键就是怎么求n和k.本来想这n一定是几个质因数的乘积,那 ...

  4. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

  5. UVA题解一

    UVA 100 题目描述:经典3n+1问题在\(n \leq 10^6\)已经证明是可行的,现在记\(f[n]\)为从\(n\)开始需要多少步才能到\(1\),给出\(L, R\),问\(f[L], ...

  6. 更换Red Hat Enterprise Linux 7 64位的yum为centos的版本

    查看redhat原有的yum包有哪些: [root@localhost ~]# rpm -qa|grep yum yum-utils-1.1.31-24.el7.noarch yum-langpack ...

  7. 五、Pandas玩转数据

    Series的简单运算 import numpy as np import pandas as pd s1=pd.Series([1,2,3],index=['A','B','C']) print(s ...

  8. 【Python五篇慢慢弹(5)】类的继承案例解析,python相关知识延伸

    类的继承案例解析,python相关知识延伸 作者:白宁超 2016年10月10日22:36:57 摘要:继<快速上手学python>一文之后,笔者又将python官方文档认真学习下.官方给 ...

  9. python基础之正则表达式

    正则表达式语法 正则表达式 (或 RE) 指定一组字符串匹配它;在此模块中的功能让您检查一下,如果一个特定的字符串匹配给定的正则表达式 (或给定的正则表达式匹配特定的字符串,可归结为同一件事). 正则 ...

随机推荐

  1. js判断是否为ie6以外的浏览器,若是,则调用相应脚本

    if(navigator.userAgent.indexOf("MSIE 6.0") < 0) { //相应JavaScript脚本}

  2. Good Bye 2015B(模拟或者二进制枚举)

    B. New Year and Old Property time limit per test 2 seconds memory limit per test 256 megabytes input ...

  3. Win10开机提示Resume from Hibernation该怎么办?

    Windows10系统的电脑开机提示:Resume from Hibernation(从休眠恢复),这是电脑没有真正关机,而是上次关机时进入了[休眠状态],所以开机时提示:从休眠恢复.如何解决Wind ...

  4. java中常用的工具类(一)

    我们java程序员在开发项目的是常常会用到一些工具类.今天我汇总了一下java中常用的工具方法.大家可以在项目中使用.可以收藏!加入IT江湖官方群:383126909 我们一起成长 一.String工 ...

  5. document.location.reload();与location.href='xxx'的区别

    document.location.reload();会重新加载页面,onload事件会被触发. location.href='xxx'刷新页面,onload事件不会触发.

  6. WPF 自定义Metro Style窗体

    为了使WPF程序在不同版本的操作系统上保持一致的显示效果,我们需要重写WPF控件样式.这篇博客将展示如何创建一个Metro Style的WPF窗体. 首先先看一下最终窗体的效果图, 通过截图我们可以看 ...

  7. 注解:【有连接表的】Hibernate单向N->N关联

    Person与Address关联:单向N->N,[有连接表的] #和单向1->N关联代码完全相同,控制关系的一端需要增加一个set类型的属性,被关联的持久化实例以集合形式存在. #N-&g ...

  8. 【荐】Spring事务配置的五种方式

    Spring配置文件中关于事务配置总是由三个组成部分,分别是DataSource.TransactionManager和代理机制这三部分,无论哪种配置方式,一般变化的只是代理机制这部分. DataSo ...

  9. 使用android ProgressBar和Toast生成一个界面

    首先我需要这样一个界面 这个界面是在使用AudioManager.adjustStreamVolume(int streamType, int direction, int flags)显示出来的,记 ...

  10. 【SSM】拦截器的原理、实现

    一.背景: 走过了双11,我们又迎来了黑色星期五,刚过了黑五,双12又将到来.不管剁手的没有剁手的,估计这次都要剁手了!虽然作为程序猿的我,没有钱但是我们长眼睛了,我们关注到的是我们天猫.淘宝.支付宝 ...