[问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题:

设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线性变换, 且存在非零向量 \(\alpha\in V\) 使得 \[V=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots).\]

设 \(f(x)\) 是 \(\varphi\) 的特征多项式, 并且 \(f(x)\) 在数域 \(K\) 上至少有两个互异的首一不可约因式, 证明: 存在非零向量 \(\beta,\gamma\in V\) 使得 \[ V=L(\beta,\varphi(\beta),\varphi^2(\beta),\cdots)\oplus L(\gamma,\varphi(\gamma),\varphi^2(\gamma),\cdots).\]

[问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)的更多相关文章

  1. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  2. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

  3. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...

  4. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  5. [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)

    [问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...

  6. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  7. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  8. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  9. [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)

    [问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...

随机推荐

  1. 数组API

    1.数组的创建 var arrayObj = new Array();//创建一个默认数组,长度是0 var arrayObj = new Array(size);//创建一个size长度的数组,注意 ...

  2. gvim配置

    colorscheme darkblue set lines=100 set columns=150

  3. python关于列表转为字典的两个小方法

    1.现在有两个列表,list1 = ['key1','key2','key3']和list2 = ['1','2','3'],把他们转为这样的字典:{'key1':'1','key2':'2','ke ...

  4. 论url

    http://www.cnblogs.com/yexiaochai/p/3650379.css文件中 background: (../images/logo.png); http://www.cnbl ...

  5. 【iCore3 双核心板_FPGA】例程七:基础逻辑门实验——逻辑门使用

    实验指导书及代码包下载: http://pan.baidu.com/s/1Rs18U iCore3 购买链接: https://item.taobao.com/item.htm?id=52422943 ...

  6. ul+li标签制作表格

    table标签制作表格代码繁琐,且不方便后期代码维护. li标签加上css的浮动样式可以制作多种样式的表格. 代码如下: <ul id="ttttt" style=" ...

  7. php session详解

    <?php /* * session_abort — Discard session array changes and finish session 舍弃会话序列变化和结束会话 session ...

  8. LoadRunner11.00安装问题及解决方法

    1.安装提示:“安装程序已确定正在等待重新启动....” 解决方法:打开安装包,找到:\Additional Components\IDE Add-Ins\MS Visual Studio .NET\ ...

  9. Git command line

    # Pull the repo from master git pull # Create branch for myself in local git branch john/jenkins_cod ...

  10. css3超过指定宽度文字,显示省略号

    text-overflow:ellipsis; overflow:hidden; white-space:nowrap; width:200px;