题意

给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \sum_{i=1}^{n} \frac{s_i}{v_i} $

分析

首先是贪心,很显然小于等于号要取等号,即问题转化为,满足\(g(V) = \sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 = E\),最小化$ f(V) = \sum_{i=1}^{n} \frac{s_i}{v_i}$。于是拉格朗日乘数大法好。

题解

拉格朗日乘数:

满足\(g(X) = c\),最大(小)化\(f(X)\),其中\(X\)是向量。

大概就是令\(F(X, \lambda) = f(X) + \lambda (g(X) - c)\),得到\(|X|+1\)个偏导为0的方程,答案就是所有解的其中一个。

对于本题:

$$
\begin{align}
F(V, \lambda)
& = f(V) + \lambda (g(V) - E) \\
& = \sum_{i=1}^{n} \left( \frac{s_i}{v_i} + \lambda k_i s_i ( v_i - v_i' )^2 \right) - \lambda E \\
& = \sum_{i=1}^{n} \left( \frac{s_i}{v_i} + \lambda k_i s_i v_i^2 + \lambda k_i s_i {v'}_i^2 - 2\lambda k_i s_i v'_i v_i \right) - \lambda E \\
\end{align}
$$

解出偏导方程,得到:

$$
2 \lambda k_i v_i^2 (v_i - v'_i) - 1 = 0
$$

由于\(v_i > v_i'\),所以对于答案的解来说,\(\lambda>0\)。而且还可以发现\(v_i\)关于\(\lambda\)单调,然后得到\((v_i - v ' _ i)\)关于\(\lambda\)单调。所以\(g(V)\)关于\(\lambda\)单调,于是我们可以二分一下\(\lambda\)。得到了\(\lambda\),求\(v_i\)也可以二分,或者牛顿迭代。

反思

1、数学太弱。

#include <bits/stdc++.h>
using namespace std;
typedef double lf;
const lf oo=1e9, eps=1e-12;
const int N=10005;
lf s[N], k[N], vv[N], v[N];
int n;
inline lf sqr(lf a) {
return a*a;
}
lf got(lf lambda) {
lf e=0;
for(int i=1; i<=n; ++i) {
lf l=0, r=oo, go=1/(lambda*k[i]*2);
while(r-l>=eps) {
lf mid=(l+r)/2;
if(sqr(mid)*(mid-vv[i])<=go) {
l=mid;
}
else {
r=mid;
}
}
v[i]=(l+r)/2;
e+=k[i]*s[i]*sqr(v[i]-vv[i]);
}
return e;
}
int main() {
lf E, l=0, r=oo;
scanf("%d%lf", &n, &E);
for(int i=1; i<=n; ++i) {
scanf("%lf%lf%lf", &s[i], &k[i], &vv[i]);
}
while(r-l>=eps) {
lf mid=(l+r)/2;
if(got(mid)<=E) {
r=mid;
}
else {
l=mid;
}
}
got((l+r)/2);
lf ans=0;
for(int i=1; i<=n; ++i) {
ans+=s[i]/v[i];
}
printf("%.9f\n", ans);
return 0;
}

【BZOJ】2876: [Noi2012]骑行川藏的更多相关文章

  1. bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘

    2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: ...

  2. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  3. 2876: [Noi2012]骑行川藏 - BZOJ

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  4. bzoj2876 [Noi2012]骑行川藏

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  5. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  6. [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...

  7. NOI2012 骑行川藏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2876 表示完全不会...... 还是跪拜大神吧 http://www.cnblogs.com/Ger ...

  8. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  9. 【bzoj2876】 Noi2012—骑行川藏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2876 (题目链接) 题意 在满足约束条件$${\sum_{i=1}^ns_ik_i(v_i-v_i' ...

随机推荐

  1. poj 1002:487-3279(水题,提高题 / hash)

    487-3279 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 236746   Accepted: 41288 Descr ...

  2. [LeetCode] Happy Number

    Happy Number Total Accepted: 35195 Total Submissions: 106936 Difficulty: Easy Write an algorithm to ...

  3. POJ3691 DNA repair(AC自动机 DP)

    给定N个长度不超过20的模式串,再给定一个长度为M的目标串S,求在目标串S上最少改变多少字符,可以使得它不包含任何的模式串 建立Trie图,求得每个节点是否是不可被包含的串,然后进行DP dp[i][ ...

  4. Go1.7改善了编译速度并且会生成更快的代码

    Go1.7的开发周期正在接近它的下一个里程碑,Go的提交者Dave Cheney报告了子即将发布的版本中,团队成员在语言工具链上的努力. Cheney称,基于当前的开发状态,Go1.7将会很容易就成为 ...

  5. PHPCMS_v9 wap不同列表采用不同模板的方法

    .在phpcms\modules\wap\index.php中搜索 $template = ($TYPE[$typeid]['parentid']==0 && in_array($ty ...

  6. android:layout_gravity和android:gravity属性的区别(转)

    gravity的中文意思就是”重心“,就是表示view横向和纵向的停靠位置 android:gravity:是对view控件本身来说的,是用来设置view本身的文本应该显示在view的什么位置,默认值 ...

  7. C# 拓展方法

    /// <summary> /// 扩展类 /// </summary> public static class Extend { /// <summary> // ...

  8. 4.0 和4.5 app 和generic,xaml的问题

    4.0里面不支持Generic.xaml里面 <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source=& ...

  9. python操作excel表格(xlrd/xlwt)

    最近遇到一个情景,就是定期生成并发送服务器使用情况报表,按照不同维度统计,涉及python对excel的操作,上网搜罗了一番,大多大同小异,而且不太能满足需求,不过经过一番对源码的"研究&q ...

  10. js 获取系统当前时间

    JS获取当前的日期和时间的方法:var myDate = new Date();myDate.getYear(); //获取当前年份(2位)myDate.getFullYear(); //获取完整的年 ...