题目描述

小Q在电子工艺实习课上学习焊接电路板。一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3….进行标号。电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点,都存在且仅存在一条通路(通路指连接两个元件的导线序列)。在电路板上存在一个特殊的元件称为“激发器”。当激发器工作后,产生一个激励电流,通过导线传向每一个它所连接的节点。而中间节点接收到激励电流后,得到信息,并将该激励电流传向与它连接并且尚未接收到激励电流的节点。最终,激烈电流将到达一些“终止节点”——接收激励电流之后不再转发的节点。激励电流在导线上的传播是需要花费时间的,对于每条边e,激励电流通过它需要的时间为te,而节点接收到激励电流后的转发可以认为是在瞬间完成的。现在这块电路板要求每一个“终止节点”同时得到激励电路——即保持时态同步。由于当前的构造并不符合时态同步的要求,故需要通过改变连接线的构造。目前小Q有一个道具,使用一次该道具,可以使得激励电流通过某条连接导线的时间增加一个单位。请问小Q最少使用多少次道具才可使得所有的“终止节点”时态同步?

输入

第一行包含一个正整数N,表示电路板中节点的个数。第二行包含一个整数S,为该电路板的激发器的编号。接下来N-1行,每行三个整数a , b , t。表示该条导线连接节点a与节点b,且激励电流通过这条导线需要t个单位时间

输出

仅包含一个整数V,为小Q最少使用的道具次数

样例输入

3
1
1 2 1
1 3 3

样例输出

2

提示

N ≤ 500000,te ≤ 1000000


题解

树形dp。

由于时间只增不减,所以每个节点到达其所有叶子节点的时间应增加为所有时间中的最大值。

于是可以树形dp,f[x]表示x到其叶子节点的最长时间,那么有f[x]=max(f[to[i]]+val[i])。

最后将Σ(f[x]-f[to[i]]-val[i])累加到答案上即可。

注意答案要用long long形式。

#include <stdio.h>
#include <string.h>
int head[500001] , to[1000002] , next[1000002] , cnt = 1;
long long ans , val[1000002] , f[500001];
long long max(long long a , long long b)
{
return a > b ? a : b;
}
void add(int x , int y , long long z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
void dp(int x , int fa)
{
int i , y;
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(y != fa)
{
dp(y , x);
f[x] = max(f[x] , f[y] + val[i]);
}
}
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(y != fa)
ans += f[x] - f[y] - val[i];
}
}
int main()
{
int n , s , i , x , y;
long long z;
scanf("%d%d" , &n , &s);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d%d%lld" , &x , &y , &z);
add(x , y , z);
add(y , x , z);
}
dp(s , 0);
printf("%lld\n" , ans);
return 0;
}

另:某些oj上dfs写法可能会导致栈溢出(考试时应该不会吧...),于是便有bfs写法如下:

#include <stdio.h>
#include <string.h>
int head[500001] , to[1000002] , next[1000002] , cnt = 1 , q[500001] , qh = 1 , qt = 1 , fa[500001];
long long ans , val[1000002] , f[500001] , v[500001];
long long max(long long a , long long b)
{
return a > b ? a : b;
}
void add(int x , int y , long long z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
int main()
{
int n , s , i , j , x , y;
long long z;
scanf("%d%d" , &n , &s);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d%d%lld" , &x , &y , &z);
add(x , y , z);
add(y , x , z);
}
q[1] = s;
fa[1] = -1;
while(qh <= qt)
{
x = q[qh];
qh ++ ;
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(y != fa[x])
{
fa[y] = x;
v[y] = val[i];
q[++qt] = y;
}
}
}
for(i = n ; i >= 1 ; i -- )
{
x = q[i];
for(j = head[x] ; j ; j = next[j])
{
y = to[j];
if(y != fa[x])
f[x] = max(f[x] , f[y] + v[y]);
}
for(j = head[x] ; j ; j = next[j])
{
y = to[j];
if(y != fa[x])
ans += f[x] - f[y] - v[y];
}
}
printf("%lld\n" , ans);
return 0;
}

【bzoj1060】[ZJOI2007]时态同步的更多相关文章

  1. bzoj千题计划163:bzoj1060: [ZJOI2007]时态同步

    http://www.lydsy.com/JudgeOnline/problem.php?id=1060 以激发器所在节点为根 终止节点一定是叶节点 记录点的子树内最深的终止节点 然后从根往下使用道具 ...

  2. bzoj1060 [ZJOI2007]时态同步

    Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3….进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路板 ...

  3. [BZOJ1060][ZJOI2007]时态同步 树形dp

    Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数 字1,2,3….进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路 ...

  4. BZOJ1060: [ZJOI2007]时态同步(树形dp 贪心)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3285  Solved: 1286[Submit][Status][Discuss] Descript ...

  5. [luogu1131][bzoj1060][ZJOI2007]时态同步【树形DP】

    传送门:https://www.luogu.org/problemnew/show/P1131 题目大意 给你一棵树,每条边有边权,要求增加一些边的边权,使得根节点到每个叶子节点的距离相等,求出最少共 ...

  6. [BZOJ1060][ZJOI2007]时态同步(树形DP)

    [我是传送门] 因为边权只能增加,那么设f[u]为u子树上从i出发到达某个叶节点的最大路径, 显然Ans应该增加f[u]-f[v]-e[i].w Code #include <cstdio> ...

  7. 【BZOJ1060】[ZJOI2007]时态同步 树形DP

    [BZOJ1060][ZJOI2007]时态同步 Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3-.进行标号.电路 ...

  8. 【BZOJ-1060】时态同步 树形DP (DFS爆搜)

    1060: [ZJOI2007]时态同步 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2101  Solved: 595[Submit][Statu ...

  9. BZOJ 1060: [ZJOI2007]时态同步( 树形dp )

    坑爹...数据是错的..详见discuss  http://www.lydsy.com/JudgeOnline/wttl/wttl.php?pid=1060 先求根到叶子的距离最大值x, 然后把所有叶 ...

  10. P1131 [ZJOI2007]时态同步(树形dp)

    P1131 [ZJOI2007]时态同步 设$f[i]$为与$i$与最远的点的距离 在dfs时每次更新的时候顺便统计一下长度,不同的话就改成最长的那条并更新答案 #include<iostrea ...

随机推荐

  1. 和redis谈一场恋爱(第一天邂逅)

    前几天玩了下Memcache,发现挺好用.知道redis是Memcache的妹妹.我本着大公无私和博大的胸怀,看着redis孤零零的躺在角落里,委实觉得可怜.心里总有个声音在说,你既然已经爱上了Mem ...

  2. R in bioinformatic

    TCGA https://www.bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/tcgaBiolinks ...

  3. angular随笔

    angular个别情况scope值不能改变或者不能绑定[如:指令内ctrl.$setViewValue()不能直接改变input的val值,该处需要使用scope.$apply] 如之前写的简单指令 ...

  4. css011 表格和表单的格式化

    css011 表格和表单的格式化 一.    让表格专司其职    Html中创建一个三行三列的表格 <table> <caption align="bottom" ...

  5. spring boot properties

    [转载] 代码从开发到测试要经过各种环境,开发环境,测试环境,demo环境,线上环境,各种环境的配置都不一样,同时要方便各种角色如运维,接口测试, 功能测试,全链路测试的配置,hardcode 肯定不 ...

  6. easyUI 树的上下文菜单

    一.属性:onContextMenu onContextMenu: function(e,node){ e.preventDefault(); $(this).tree('select',node.t ...

  7. 自然语言12_Tokenizing Words and Sentences with NLTK

    https://www.pythonprogramming.net/tokenizing-words-sentences-nltk-tutorial/ # -*- coding: utf-8 -*- ...

  8. AspectJ基础学习之二搭建环境(转载)

    AspectJ基础学习之二搭建环境(转载) 一.下载Aspectj以及AJDT 上一章已经列出了他的官方网站,自己上去download吧.AJDT是一个eclipse插件,开发aspectj必装,他可 ...

  9. HDFS的Java操作

    实验环境: Windows 10 Eclipse Mars.2 Release (4.5.2) CentOS 7 Hadoop-2.7.3 先决条件: 1) Windows上各环境变量已配置OK.   ...

  10. ecshop 快速添加会员

    /*------------------------------------------------------ */ //-- 快速添加会员 /*-------------------------- ...