以前做过的题目了。。。。补集+DP

       Check the difficulty of problems
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 4091   Accepted: 1811

Description

Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms: 
1. All of the teams solve at least one problem. 
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?

Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

Sample Input

2 2 2
0.9 0.9
1 0.9
0 0 0

Sample Output

0.972

Source

POJ Monthly,鲁小石

 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std; int M,T,N;
double a[][][],s[][],p1,pn,solve[][]; int main()
{
while(~scanf("%d%d%d",&M,&T,&N))
{
if((M||T||N)==) break;
for(int i=;i<=T;i++) for(int j=;j<=M;j++) scanf("%lf",&solve[i][j]);
memset(a,,sizeof(a)); memset(s,,sizeof(s));
for(int i=;i<=T;i++)
{
a[i][][]=;
for(int j=;j<=M;j++)
{
a[i][j][]=a[i][j-][]*(-solve[i][j]);
}
}
for(int i=;i<=T;i++)
{
for(int j=;j<=M;j++)
{
for(int k=;k<=j;k++)
{
a[i][j][k]=a[i][j-][k-]*solve[i][j]+a[i][j-][k]*(-solve[i][j]);
}
}
}
for(int i=;i<=T;i++)
{
s[i][]=a[i][M][];
for(int j=;j<=M;j++)
{
s[i][j]=s[i][j-]+a[i][M][j];
}
}
p1=pn=.;
for(int i=;i<=T;i++)
{
p1*=s[i][M]-s[i][];
pn*=s[i][N-]-s[i][];
}
printf("%.3lf\n",p1-pn);
}
return ;
}

POJ 2151 Check the difficulty of problems的更多相关文章

  1. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  2. POJ 2151 Check the difficulty of problems (动态规划-可能DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4522   ...

  3. [ACM] POJ 2151 Check the difficulty of problems (概率+DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4748   ...

  4. poj 2151 Check the difficulty of problems(概率dp)

    poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...

  5. POJ 2151 Check the difficulty of problems:概率dp【至少】

    题目链接:http://poj.org/problem?id=2151 题意: 一次ACM比赛,有t支队伍,比赛共m道题. 第i支队伍做出第j道题的概率为p[i][j]. 问你所有队伍都至少做出一道, ...

  6. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  7. POJ 2151 Check the difficulty of problems (概率dp)

    题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...

  8. 【POJ】2151 Check the difficulty of problems

    http://poj.org/problem?id=2151 题意:T个队伍M条题目,给出每个队伍i的每题能ac的概率p[i][j],求所有队伍至少A掉1题且冠军至少A掉N题的概率(T<=100 ...

  9. Check the difficulty of problems(POJ 2151)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5457   ...

随机推荐

  1. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. [Android] View.setTag(key,Object) (java.lang.IllegalArgumentException: The key must be an application-specific resource id.)

    转自: http://blog.csdn.net/brokge/article/details/8536906 setTag是android的view类中很有用的一个方法,可以用它来给空间附加一些信息 ...

  3. Alpha版本十天冲刺——Day 8

    站立式会议 会议总结 队员 今天完成 遇到的问题 明天要做 感想 鲍亮 无 同时发送图片和其它字段信息(string)到服务器,找不到好方法实现 完成发帖接口 心累,写好了一个传送文件的接口,但是后端 ...

  4. 利用css3选择器及css3边框做出的特效(1)

    利用border-radius及box-shadow制作圆角表格 界面效果图如下: css样式如下所示: * { margin:; padding:; } body { padding: 40px 1 ...

  5. POJ3254Corn Fields(状态压缩DP入门)

    题目链接 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相邻.问有多少种放牛方案(一 ...

  6. shell 中 &&和||的方法

    Shell && 和 || shell 在执行某个命令的时候,会返回一个返回值,该返回值保存在 shell 变量 $? 中.当 $? == 0 时,表示执行成功:当 $? == 1 时 ...

  7. 安装和使用Linux花生壳(公网版)

    一.安装说明 1.下载相应的安装包,安装程序 2.运行程序.配置程序(默认使用/etc/phlinux.conf,如果不存在这个文件则自动进入交互配置) [root@localhost -]# phd ...

  8. 设计模式-观察者模式(List列表维护观察者)

    namespace ConsoleApplication1{ interface IObserver { void ReceiveMsg(string msg); } class Observer : ...

  9. WinForm------窗体初始化位置的显示

    在窗体的构造方法里面添加 public Form2() { InitializeComponent(); //指定窗口初始化时的位置(计算机屏幕中间) this.StartPosition = For ...

  10. React入门简单实践

    参考文献: 1.React入门示例教程——阮一峰 2.React仅仅只是你的界限 React主要的优点就是增量更新(虚拟DOM)和组件化(状态机). <!DOCTYPE html> < ...