按边长从小到大排序。。。
再逐个加入(就像MST一样)最先联通的点之间最长路径中的最小值就是新加入的边的长。。。。

Count The Pairs

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 266    Accepted Submission(s): 140

Problem Description

  With the 60th anniversary celebration of Nanjing University of Science and Technology coming soon, the university sets n tourist spots to welcome guests. Of course, Redwood forests in our university and its Orychophragmus violaceus must be recommended as top ten tourist spots, probably the best of all. Some undirected roads are made to connect pairs of tourist spots. For example, from Redwood forests (suppose it’s a) to fountain plaza (suppose it’s b), there may exist an undirected road with its length c. By the way, there is m roads totally here. Accidently, these roads’ length is an integer, and all of them are different. Some of these spots can reach directly or indirectly to some other spots. For guests, they are travelling from tourist spot s to tourist spot t, they can achieve some value f. According to the statistics calculated and recorded by us in last years, We found a strange way to calculate the value f:
  From s to t, there may exist lots of different paths, guests will try every one of them. One particular path is consisted of some undirected roads. When they are travelling in this path, they will try to remember the value of longest road in this path. In the end, guests will remember too many longest roads’ value, so he cannot catch them all. But, one thing which guests will keep it in mind is that the minimal number of all these longest values. And value f is exactly the same with the minimal number.
  Tom200 will recommend pairs (s, t) (start spot, end spot points pair) to guests. P guests will come to visit our university, and every one of them has a requirement for value f, satisfying f>=t. Tom200 needs your help. For each requirement, how many pairs (s, t) you can offer?
 

Input
  Multiple cases, end with EOF.
  First line:n m
  n tourist spots ( 1<n<=10000), spots’ index starts from 0.
  m undirected roads ( 1<m<=500000).

Next m lines, 3 integers, a b c
  From tourist spot a to tourist spot b, its length is c. 0<a, b<n, c(0<c<1000000000), all c are different.

Next one line, 1 integer, p (0<p<=100000)
  It means p guests coming.

Next p line, each line one integer, t(0<=t)
  The value t you need to consider to satisfy f>=t.

 

Output
  For each guest's requirement value t, output the number of pairs satisfying f>=t.
  Notice, (1,2), (2,1) are different pairs.
 

Sample Input
2 1
0 1 2
3
1
2
3
3 3
0 1 2
0 2 4
1 2 5
5
0
2
3
4
5
 

Sample Output
2
2
0
6
6
4
4
0
 

Source
 

Recommend
liuyiding
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

struct Edge
{
    int s,t,len;
}E[550000];
int n,m,p,ar[550000],sum[550000];

bool cmp(Edge a,Edge b)
{
    return a.len<b.len;
}

int father[550000],ran[550000];

void Init()
{
    for(int i=0;i<n+10;i++)
    {
        father=i;
        ran=1;
    }
}

int Find(int x)
{
    if(x==father[x]) return x;
    else return  father[father[x]]=Find(father[x]);
}

int Union(int a,int b)
{
    int fa=Find(a),fb=Find(b);
    if(fa==fb) return 0;
    if(ran[fa]<=ran[fb])
    {
        father[fa]=fb;
        int x=ran[fb];
        ran[fb]+=ran[fa];
        return ran[fa]*x;
    }
    else
    {
        father[fb]=fa;
        int x=ran[fa];
        ran[fa]+=ran[fb];
        return ran[fb]*x;
    }
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&E.s,&E.t,&E.len);
        }
        sort(E,E+m,cmp);
        Init();
        for(int i=0;i<m;i++)
        {
            ar=E.len;
            int S=E.s,T=E.t;
            if(i==0)
                sum=Union(S,T);
            else
                sum=sum[i-1]+Union(S,T);
           // printf("NO.%d     %d: %d\n",i,ar,sum);
        }
        scanf("%d",&p);
        while(p--)
        {
            int q;
            scanf("%d",&q);
            int t=lower_bound(ar,ar+m,q)-ar;
          //  cout<<"......"<<t<<endl;
            printf("%d\n",(sum[m-1]-sum[t-1])*2);
        }
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

HDOJ 4750 Count The Pairs的更多相关文章

  1. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  2. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  3. hdu 4750 Count The Pairs(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 代码: #include<cstdio> #include<cstring&g ...

  4. hdu 4750 Count The Pairs(并查集+二分)

    Problem Description With the 60th anniversary celebration of Nanjing University of Science and Techn ...

  5. 2013南京网赛1003 hdu 4750 Count The Pairs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意:给出一个无向图,f(a,b)表示从点a到点b的所有路径中的每条路径的最长边中的最小值,给出 ...

  6. HDU 4750 Count The Pairs(并查集)

    题目链接 没有发现那个点,无奈. #include <cstdio> #include <cstring> #include <cmath> #include &l ...

  7. hdu 4750 Count The Pairs (2013南京网络赛)

    n个点m条无向边的图,对于q个询问,每次查询点对间最小瓶颈路 >=f 的点对有多少. 最小瓶颈路显然在kruskal求得的MST上.而输入保证所有边权唯一,也就是说f[i][j]肯定唯一了. 拿 ...

  8. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  9. HDU 4750 Count The Pairs (离线并查集)

    按边从小到大排序. 对于每条边(from, to, dist),如果from和to在同一个集合中,那么这条边无意义,因为之前肯定有比它更小的边连接了from和to. 如果from和to不属于同一个集合 ...

随机推荐

  1. sublime配置java编译环境

    Windows下配置Sublime Text3的Java环境 字数507 阅读2301 评论2 喜欢2 Sublime Text3是一个比较好用的IDE.截图如下: java环境截图 下面就简单介绍下 ...

  2. hdu 2036 - 改革春风吹满地(计算几何)

    题意:求解多边形面积 解法: 先了解数学上"叉积"的含义与性质: 三角形ΔABC的面积为: 我们可以依次计算每个三角形的面积,ΔABC,ΔACE,ΔEF - - 所有三角形的面积之 ...

  3. Js里面的强制类型转换

    js 和 PHP语言一样是弱类型语言.近期我也在看C语言,并没有传说中那么难,既是书中一再强调的指针部分,也没有那么夸张.至少是理论和语法理解起来不是很难.看起来凡是什么东西,不要总是被别人的话迷惑了 ...

  4. CDN网络(一)之典型的CND架构与HTTP协议的缓存控制

    前言 本人以前在CDN厂商蓝汛就职过一年时间,利用脑子里还残留的一些CDN知识,结合现有的书籍材料,写点东西. what's the CDN CDN(content delivery Network) ...

  5. 日志模块logging使用心得

    在应用程序使用中,日志输出对应用维护人员.开发人员判断程序的问题起重要作用. 那么在python中如何定义程序的日志输出? 推荐使用日志模块logging 需求:实现日志内容输出在文件中和控制器中 i ...

  6. Ruby on rails学习笔记——安装环境

    出现问题: C:\Users\len>gem install rails ERROR: While executing gem ... (Gem::RemoteFetcher::FetchErr ...

  7. JSP 自定义标签

    0 标签技术的API继承体系 1 作用 jsp自定义标签用于移除页面中的java代码 2 实现 2.1 标签处理类ViewIPTag.java package com.zsm.util; import ...

  8. How to (seriously) read a scientific paper

    How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...

  9. Reading With Purpose: A grand experiment

    Reading With Purpose: A grand experiment This is the preface to a set of notes I'm writing for a sem ...

  10. 在64位系统上不能安装Matlab notebook的解决方案

    在64位系统上不能安装Matlab notebook的解决方案 过程分解 第一步:安装好matlab(附:Matalab R2015a界面) 第二步:在matlab中执行命令 >>note ...