CF 213A Game(拓扑排序)
Description
Furik and Rubik love playing computer games. Furik has recently found a new game that greatly interested Rubik. The game consists ofn parts and to complete each part a player may probably need to complete some other ones. We know that the game can be fully completed, that is, its parts do not form cyclic dependencies.
Rubik has 3 computers, on which he can play this game. All computers are located in different houses. Besides, it has turned out that each part of the game can be completed only on one of these computers. Let's number the computers with integers from 1 to 3. Rubik can perform the following actions:
- Complete some part of the game on some computer. Rubik spends exactly 1 hour on completing any part on any computer.
- Move from the 1-st computer to the 2-nd one. Rubik spends exactly 1 hour on that.
- Move from the 1-st computer to the 3-rd one. Rubik spends exactly 2 hours on that.
- Move from the 2-nd computer to the 1-st one. Rubik spends exactly 2 hours on that.
- Move from the 2-nd computer to the 3-rd one. Rubik spends exactly 1 hour on that.
- Move from the 3-rd computer to the 1-st one. Rubik spends exactly 1 hour on that.
- Move from the 3-rd computer to the 2-nd one. Rubik spends exactly 2 hours on that.
Help Rubik to find the minimum number of hours he will need to complete all parts of the game. Initially Rubik can be located at the computer he considers necessary.
Input
The first line contains integer n (1 ≤ n ≤ 200) — the number of game parts. The next line contains n integers, the i-th integer — ci(1 ≤ ci ≤ 3) represents the number of the computer, on which you can complete the game part number i.
Next n lines contain descriptions of game parts. The i-th line first contains integer ki (0 ≤ ki ≤ n - 1), then ki distinct integers ai, j(1 ≤ ai, j ≤ n; ai, j ≠ i) — the numbers of parts to complete before part i.
Numbers on all lines are separated by single spaces. You can assume that the parts of the game are numbered from 1 to n in some way. It is guaranteed that there are no cyclic dependencies between the parts of the game.
Output
Sample Input
110 52 2 1 1 31 52 5 12 5 41 50
Sample Output
1 7
Note
#include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<vector> #include<algorithm> using namespace std; vector<int>itv[5],edge[205]; int Indegree[205]; int In[205]; int id[205]; int solve(int x) { int res = 0; queue<int>que[5]; for (int i = 1;i < 205;i++) { In[i] = Indegree[i]; } for (int i = 1;i <= 3;i++) { for (int j = 0;j < itv[i].size();j++) { if (In[itv[i][j]] == 0) { que[i].push(itv[i][j]); } } } for (int i = x;;i = (i+1)%3) { if (i == 0) { i = 3; } while (!que[i].empty()) { int val = que[i].front(); que[i].pop(); res++; for (int j = 0;j < edge[val].size();j++) { if (--In[edge[val][j]] == 0) { que[id[edge[val][j]]].push(edge[val][j]); } } } if (que[1].empty() && que[2].empty() && que[3].empty()) break; res++; } return res; } int main() { int N,tmp,cnt; memset(Indegree,0,sizeof(Indegree)); memset(id,0,sizeof(id)); for (int i = 0;i < 5;i++) { itv[i].clear(); } for (int i = 0;i < 205;i++) { edge[i].clear(); } scanf("%d",&N); for (int i = 1;i <= N;i++) { scanf("%d",&tmp); itv[tmp].push_back(i); id[i] = tmp; } for (int i = 1;i <= N;i++) { scanf("%d",&cnt); while (cnt--) { scanf("%d",&tmp); edge[tmp].push_back(i); Indegree[i]++; } } int res = 0x3f3f3f3f; for (int i = 1;i <= 3;i++) { res = min(res,solve(i)); } printf("%d\n",res); return 0; }
CF 213A Game(拓扑排序)的更多相关文章
- CF 915 D 拓扑排序
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; const int mod = 14285 ...
- [CF #290-C] Fox And Names (拓扑排序)
题目链接:http://codeforces.com/contest/510/problem/C 题目大意:构造一个字母表,使得按照你的字母表能够满足输入的是按照字典序排下来. 递归建图:竖着切下来, ...
- CF Fox And Names (拓扑排序)
Fox And Names time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- CF #CROC 2016 - Elimination Round D. Robot Rapping Results Report 二分+拓扑排序
题目链接:http://codeforces.com/contest/655/problem/D 大意是给若干对偏序,问最少需要前多少对关系,可以确定所有的大小关系. 解法是二分答案,利用拓扑排序看是 ...
- CF 274D Lovely Matrix 拓扑排序,缩点 难度:2
http://codeforces.com/problemset/problem/274/D 这道题解题思路: 对每一行统计,以小值列作为弧尾,大值列作为弧头,(-1除外,不连弧),对得到的图做拓扑排 ...
- CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)
ACM思维题训练集合 Furik and Rubik love playing computer games. Furik has recently found a new game that gre ...
- Java排序算法——拓扑排序
package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...
- CF1131D Gourmet choice(并查集,拓扑排序)
这题CF给的难度是2000,但我感觉没这么高啊…… 题目链接:CF原网 题目大意:有两个正整数序列 $a,b$,长度分别为 $n,m$.给出所有 $a_i$ 和 $b_j(1\le i\le n,1\ ...
- Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) E. Tree Folding 拓扑排序
E. Tree Folding 题目连接: http://codeforces.com/contest/765/problem/E Description Vanya wants to minimiz ...
- BZOJ1880:[SDOI2009]Elaxia的路线(最短路,拓扑排序)
Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...
随机推荐
- es6+移动轮播插件
前言:之前赶项目,都是直接用框架,对于touch事件是模拟两可,趁着有心情,用es6写一个原生移动轮播插件. 用了es6的新特性,确实挺爽的,说到es6,就不得不说到babel,博主已经码好了,直接用 ...
- win7下IIS配置以及域名映射方法
win7下IIS配置以及域名映射方法 第一步:打开控制面板,选择程序与功能,如下图: 第二步:双击打开程序与功能面板,如下图: 第三步:打开”打开或关闭windows功能”(红线圈起来的地方),如下图 ...
- jQuery.uploadify-----文件上传带进度条,支持多文件上传的插件
借鉴别人总结的uploadify:基于jquery的文件上传插件,支持ajax无刷新上传,多个文件同时上传,上传进行进度显示,控制文件上传大小,删除已上传文件. uploadify有两个版本,一个用f ...
- Xen
Xen是一个开放源代码虚拟机监视器,由剑桥大学开发.它打算在单个计算机上运行多达128个有完全功能的操作系统. 在旧(无虚拟硬件)的处理器上执行Xen,操作系统必须进行显式地修改(“移植”)以在Xen ...
- Day Four(Beta)
站立式会议 站立式会议内容总结 331 今天:增加了若干话题:建立chat–user类,查阅bmob文档. 明天: 学习bmob的sql操作 442 今天:登录信息在主页上更新数据 遇到的问题:无 明 ...
- strut2的拦截器之对request和session的封装
本文主要内容是对 implements Interceptor 这种方式的探索 前提是需要了解:责任链模式 对下面这句代码的理解: Map<String, Object> session ...
- [转]Java_List元素的遍历和删除
原文地址:http://blog.csdn.net/insistgogo/article/details/19619645 1.创建一个ArrayList List<Integer> li ...
- HoG
实现步骤 先计算每一个像素点位置上x和y方向上的梯度. 这样在每一个像素点位置上得到一个二维向量, 计算它的方向和模长 将图片分为一个个的cell, 如\(8\times 8\). 计算它的HOG: ...
- Canvas是什么
Canvas 是通过 JavaScript 来绘制 2D 图形,是 HTML 5 中新增的元素. Canvas 有如下特点: 绘制的是位图,图像放大后会失真. 不支持事件处理器. 能够以 .png 或 ...
- java-Collections工具类使用
Collections工具类方法介绍 Collections.reverse(list);//list顺序反转