“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第9章课程讲义下载(PDF)

Summary

  • Ill-conditional system

    • A system of equations is considered to be ill-conditioned if a small change in the coefficient matrix or a small change in the right hand side results in a large change in the solution vector.
    • For example, the following system $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ The solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Make a small change in the right hand side vector of the equations $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.998\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4.001\\ 7.998\end{bmatrix} = \begin{bmatrix}-3.999\\ 4.000\end{bmatrix}$$ Make a small change in the coefficient matrix of the equations $$\begin{bmatrix} 1.001& 2.001\\ 2.001& 3.998 \end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1.001& 2.001\\ 2.001& 3.998\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix} 6.989016\\ -1.497254\end{bmatrix}$$ We can see that a small change in the coefficient matrix or the right hand side resulted in a large change in the solution vector.
  • Well-conditional system
    • A system of equations is considered to be well-conditioned if a small change in the coefficient matrix of a small change in the right hand side results in a small change in the solution vector.
    • For example, the following system $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ The solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Make a small change in the right hand side vector of the equations $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.001\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} ^{-1} \cdot \begin{bmatrix} 4.001\\ 7.001\end{bmatrix} = \begin{bmatrix}1.999\\ 1.001\end{bmatrix}$$ Make a small change in the coefficient matrix of the equations $$\begin{bmatrix} 1.001& 2.001\\ 2.001& 3.001 \end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1.001& 2.001\\ 2.001& 3.001\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix} 2.003\\ 0.997\end{bmatrix}$$ We can see that a small change in the coefficient matrix or the right hand side resulted in a small change in the solution vector.
  • Norm
    • Just like the determinant, the norm of a matrix is a simple unique scalar number. For a $m\times n$ matrix $[A]$, the row sum norm of $[A]$ is defined as $$\|A\|_{\infty}=\max_{1\leq i\leq m}\sum_{j=1}^{n}|a_{ij}|$$ that is, find the sum of the absolute value of the elements pf each row of the matrix $[A]$. The maximum out of the $m$ such values is the row sum norm if the matrix $[A]$.
    • For example, we have the following matrix $$[A] = \begin{bmatrix}10& -3& 5\\ -7& 2.099& -1\\ 0& 6& 5\end{bmatrix}$$ The row sum norm of $[A]$ is $$\|A\|_{\infty} = \max_{1\leq i\leq3} \sum_{j=1}^{3}|a_{ij}|$$ $$=\max[(10+7+0), (3+2.099+6), (5,-1,5)]$$ $$=\max[17, 11.099, 11] =17$$
  • The relationship between the norm and the conditioning of the matrix
    • Example of the ill-conditioned system. $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ which has the solution $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Denoting the above system as $AX=B$, and hence we have $$\|X\|_{\infty}=2$$ $$\|B\|_{\infty}=7.999$$ Making a small change in the right hand side $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.998\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}-3.999\\ 4.000\end{bmatrix}$$ Denoting the above changed system as $AX'=B'$ and $$\Delta X=X'-X=\begin{bmatrix}-3.999\\ 4.000\end{bmatrix} - \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}-5.999\\ 3.000\end{bmatrix}$$ $$\Delta B=B'-B = \begin{bmatrix}4.001\\ 7.998\end{bmatrix} - \begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix}0.001\\ -0.001\end{bmatrix}$$ Then $$\|\Delta X\|_{\infty} = 5.999$$ $$\|\Delta B\|_{\infty} = 0.001$$ The relative change in the norm of the solution vector is $${\|\Delta X\|_{\infty}\over \|X\|_{\infty}} = {5.999\over2}=2.9995$$ The relative change in the norm of the right hand side vector is $${\|\Delta B\|_{\infty}\over \|B\|_{\infty}} = {0.001\over7.999}=1.25\times10^{-4}$$ That is, the small relative change of $1.25\times10^{-4}$ in the right hand side vector norm results in a large relative change in the solution vector norm of $2.9995$. We can see the ratio of this two norms is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta B\|_{\infty} \big/ \| B\|_{\infty}} = 23993$$
    • Example of the well-conditioned system. $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ which has the solution $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Denoting the above system as $AX=B$, and hence we have $$\|X\|_{\infty}=2$$ $$\|B\|_{\infty}=7$$ Making a small change in the right hand side $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.001\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}1.999\\ 1.001\end{bmatrix}$$ Denoting the above changed system as $AX'=B'$ and $$\Delta X=X'-X=\begin{bmatrix}1.999\\ 1.001\end{bmatrix} - \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}-0.001\\ 0.001\end{bmatrix}$$ $$\Delta B=B'-B = \begin{bmatrix}4.001\\ 7.001\end{bmatrix} - \begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix}0.001\\ 0.001\end{bmatrix}$$ Then $$\|\Delta X\|_{\infty} = 0.001$$ $$\|\Delta B\|_{\infty} = 0.001$$ The relative change in the norm of the solution vector is $${\|\Delta X\|_{\infty}\over \|X\|_{\infty}} = {0.001\over2}=5\times10{-4}$$ The relative change in the norm of the right hand side vector is $${\|\Delta B\|_{\infty}\over \|B\|_{\infty}} = {0.001\over7} = 1.429 \times 10^{-4}$$ That is, the small relative change of $1.429\times10^{-4}$ in the right hand side vector norm results in a small relative change in the solution vector norm of $5\times10^{-4}$. We can see the ratio of this two norms is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta B\|_{\infty} \big/ \| B\|_{\infty}} = 3.5$$
  • Properties of Norms
    • $\|A\| \geq 0$
    • $\|kA\| = |k|\|A\|$ where $k$ is a scalar.
    • $\|A+B\|\leq \|A\| + \|B\|$
    • $\|AB\| \leq \|A\|\cdot\|B\|$
    • For a system $AX=B$, we have $${\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$ and $${\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$ where $\|A\|\|A^{-1}\|$ is called the \textbf{condition number}, Cond$(A)$.
  • Significant Digits
    • The possible relative error in the solution vector norm is no more then Cond$(A)\times\epsilon$, where $\epsilon$ is the machine epsilon which is $2.220446\times10^{-16}$ or $2^{-52}$ here (obtained by R code .Machine$double.eps on 64-bit PC, more details refer to link1 and link2).
      Hence Cond$(A) \times \epsilon$ should give us the number of significant digits, $m$ that are at least correct in our solution by finding out the largest value of $m$ for which Cond$(A) \times\epsilon$ is less than or equal to $0.5\times 10^{-m}$.
    • How many significant digits can I trust in the solution of the following system of equations? $$\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ For $$A=\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix}$$ and $$A^{-1}= \begin{bmatrix}-3& 2 \\ 2& -1\end{bmatrix}$$ Then $$\|A\|_{\infty}=5,\ \|A^{-1}\|_{\infty}=5\Rightarrow \text{Cond}(A)=\|A\|_{\infty}\|A^{-1}\|_{\infty} = 25$$ Thus $$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 25\times\epsilon\leq0.5\times10^{-m}$$ $$\Rightarrow \log(25\times\epsilon) \leq \log(0.5\times10^{-m})$$ $$\Rightarrow m\leq13.95459 $$ That is, 13 digits are at least correct in the solution vector.

Selected Problems

1. What factors does the adequacy of the solution of simultaneous linear equations depend on?

Solution:

The product of condition number Cond$(A)=\|A\|\|A^{-1}\|$ and machine epsilon $\epsilon$.

2. If a system of equations $[A][X]=[B]$ is ill-conditioned, then

A. $\det(A)=0$

B. Cond$(A)=1$

C. Cond$(A)$ is large

D. $\|A\|$ is large

Solution:

If the system is ill-conditioned, then the condition number Cond$(A)=\|A\|\|A^{-1}\|$ is large. The correct answer is C.

3. If Cond$(A)=10^{4}$ and $\epsilon=0.119\times10^{-6}$, then in $[A][X]=[B]$, at least how many significant digits are correct in the solution?

Solution:
$$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 10^{4}\times0.119\times10^{-6} \leq 0.5\times10^{-m}$$ $$\Rightarrow m\leq {\log(0.5)-\log(0.119\times10^{-2})\over \log(10)} = 2.623423$$ Thus at least 2 significant digits are correct in the solution.

4. Make a small change in the coefficient matrix of $$\begin{bmatrix}1& 2 \\ 2& 3.999\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ and find $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}}$$

Solution:

The solution of the original system is $$ \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$
Making a small change in the coefficient matrix as $$\begin{bmatrix} 1.001& 2.001 \\ 2.001& 4.000\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ and the solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}5999\\ -2999\end{bmatrix}$$ Hence the row sum norms are $$\|X\| = 2,\ \|\Delta X\|=5997,\ \|A\|=5.999,\ \|\Delta A\|=0.002$$ Thus the ratio is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}} = {5997 \big/ 2\over 0.002 \big/ 5.999} = 8994001$$ It is a large number. Hence we can conclude that this system is ill-conditioned. On the other hand, we can calculate the condition number of the coefficient matrix, note that $A^{-1} = \begin{bmatrix}-3999& 2000 \\ 2000& -1000 \end{bmatrix}$, and hence $$\|A\|\|A^{-1}\|= 5.999\times5999=35988 $$ which is also a large number.

5. Make a small change in the coefficient matrix of $$\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ and find $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}}$$

Solution:

The solution of the original system is $$ \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$
Making a small change in the coefficient matrix as $$\begin{bmatrix} 1.001& 2.001 \\ 2.001& 3.001\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ and the solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2.003\\ 0.997\end{bmatrix}$$ Hence the row sum norms are $$\|X\| = 2,\ \|\Delta X\|=0.003,\ \|A\|=5,\ \|\Delta A\|=0.002$$ Thus the ratio is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}} = {0.003 \big/ 2\over 0.002 \big/ 5} = 3.75$$ It is a small number. Hence we can conclude that this system is well-conditioned. On the other hand, we can calculate the condition number of the coefficient matrix, note that $A^{-1} = \begin{bmatrix}-3& 2 \\ 2& -1\end{bmatrix}$, and hence $$\|A\|\|A^{-1}\|= 5\times5=25$$ which is also a small number.

6. Prove $${\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$

Solution:

The key point is $\|XY\| \leq \|X\|\|Y\|$. Let $AX=B$, then if $B$ is changed to $B'$, the $X$ is changed to $X'$, such that $$AX'=B'$$ Hence we have $$AX=B,\ AX'=B'$$ $$\Rightarrow \Delta X=X'-X=A^ {-1}B'-A^{-1}B = A^{-1}\Delta B$$ $$\Rightarrow\|\Delta X\|\leq \|A^{-1}\|\|\Delta B\|$$ and $$AX=B\Rightarrow \|B\|=\|AX\| \leq \|A\|\|X\|$$ Multiply the above inequalities and obtain $$\|\Delta X\|\|B\| \leq \|A^{-1}\|\|\Delta B\|\|A\|\|X\|$$ $$\Rightarrow {\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$

7. Prove $${\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$

Solution:

Similar to the previous question, we have $$AX=B,\ A'X'=B$$ $$\Rightarrow AX=A'X'=(A+\Delta A)(X+\Delta X)=AX+A\Delta X+\Delta AX + \Delta A\Delta X$$ $$\Rightarrow A\Delta X+\Delta AX + \Delta A\Delta X = [0]$$ $$\Rightarrow \Delta A(X+\Delta X)=-A\Delta X $$ $$\Rightarrow \Delta X= -A^{-1}\Delta A(X+\Delta X) \leq \|A^{-1}\|\|\Delta A\|\|X+\Delta X\|$$ $$\Rightarrow \|A\|\Delta X\leq \|A\|\|A^{-1}\|\|\Delta A\|\|X+\Delta X\|$$ $$\Rightarrow {\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$

8. Prove that Cond$(A) \geq 1$.

Solution:
$$\text{Cond}(A) = \|A\|\|A^{-1}\| \geq \|AA^{-1}\| = \|I\|=1$$

9. For $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$ gives $$[A]^{-1} = \begin{bmatrix}-0.1099& -0.2333& 0.2799\\ -0.2999& -0.3332& 0.3999\\ 0.04995& 0.1666& 6.664\times10^{-5}\end{bmatrix}$$ (A) What is the condition number of $[A]$?

(B) How many significant digits can we at least trust in the solution of $[A][X] = B$ if $\epsilon = 0.1192\times10^{-6}$?

Solution:

(A) Cond$(A) = \|A\|\|A^{-1}\| = 17\times1.033 = 17.561$

(B) $$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 17.561\times0.1192\times10^{-6} \leq 0.5\times10^{-m}$$ $$\Rightarrow m \leq 5.378145$$ Hence 5 significant digits can be trusted in the solution.

10. Let $$[A] = \begin{bmatrix}1& 2+\delta\\ 2-\delta& 1\end{bmatrix}$$ Based on the row sum norm and given that $\delta\rightarrow0$, $\delta > 0$, what is the condition number of the matrix?

Solution:

Recall that the inverse of the matrix $[M]=\begin{bmatrix}a &b\\ c &d \end{bmatrix}$ is $$\begin{bmatrix}{d\over\det(M)} & {-b\over \det(M)}\\ {-c\over\det(M)} &{a\over\det(M)} \end{bmatrix}$$ where $\det(M) = ad-bc$. Thus we have
$$A^{-1} = \begin{bmatrix}{1\over -3+\delta^2}& -{2+\delta\over -3+\delta^2}\\{-2+\delta\over -3+\delta^2}& {1\over -3+\delta^2}\end{bmatrix}$$ The row sum norms are
$$\|A\| = \max(3+\delta, 3-\delta) = 3+\delta$$ and $$\|A^{-1}\| = \max\left({3+\delta\over 3-\delta^2}, {3-\delta \over 3-\delta^2} \right) = {3+\delta\over 3-\delta^2}$$ Hence $$\text{Cond}(A) = \|A\|\|A^{-1}\| = {(3+\delta)^2\over3-\delta^2}$$

A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. express:webpack dev-server开发中如何调用后端服务器的接口?

    开发环境:     前端:webpack + vue + vue-resource,基于如下模板创建的开发环境: https://github.com/vuejs-templates/webpack  ...

  2. unix环境高级编程基础知识之第二篇(3)

    看了unix环境高级编程第三章,把代码也都自己敲了一遍,另主要讲解了一些IO函数,read/write/fseek/fcntl:这里主要是c函数,比较容易,看多了就熟悉了.对fcntl函数讲解比较到位 ...

  3. 发布我的图片预加载控件YPreLoadImg v1.0

    介绍 大家好!很高兴向大家介绍我的图片预加载控件YPreLoadImg.它可以帮助您预加载图片,并且能显示加载的进度,在预加载完成后调用指定的方法. YPreLoadImg控件由一个名为PreLoad ...

  4. Python2.7-异常和工具

    来自<python学习手册第四版>第七部分,而且本书发布的时候3.1还未发布,所以针对本书的一些知识会有些滞后于python的版本,具体更多细节可以参考python的标准手册. 一.异常基 ...

  5. Kafka笔记

    最近做的一个项目需要跟Kafka打交道,学习了很多相关知识,就到这里来汇总一下. kafka是一个传递消息的系统,原本是用来快速记录海量log的,现在也经常用作消息队列.它主要由三个部分组成,prod ...

  6. AVL树插入操作实现

    为了提高二插排序树的性能,规定树中的每个节点的左子树和右子树高度差的绝对值不能大于1.为了满足上面的要求需要在插入完成后对树进行调整.下面介绍各个调整方式. 右单旋转 如下图所示,节点A的平衡因子(左 ...

  7. ASimpleCache使用感受

    一.简介 ASimpleCache只能作为一份教程,一个学习样板,不能当真把它当回事. 作者杨福海,Afinal框架也是他创造的. 可是我读ASimpleCache的900行代码时,发现各种难看,并且 ...

  8. php 解析json

    今天做项目的时候需要用到json数组,解析时遇到了个小小的麻烦,特此将解决办法记下: json数据如下: { "code":200, "message":&qu ...

  9. RabbitMQ 主题(Topic)

    我们进步改良了我们的日志系统.我们使用direct类型转发器,使得接收者有能力进行选择性的接收日志,,而非fanout那样,只能够无脑的转发. 虽然使用direct类型改良了我们的系统,但是仍然存在一 ...

  10. 远程登录服务器执行cmd的Python脚本

    import paramiko,os,sys ip = raw_input("input ip address :>>>") password = raw_inp ...