原题:

Description
Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city. City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energy spent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to units of energy. Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection i to intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spend only 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequence p1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them. Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i. Input
The first line contains an integer n(1 ≤ n ≤ 200 000) — the number of Mike's city intersection. The second line contains n integers a1, a2, ..., an(i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i). Output
In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1 to intersection i. Sample Input
Input
3
2 2 3
Output
0 1 2
Input
5
1 2 3 4 5
Output
0 1 2 3 4
Input
7
4 4 4 4 7 7 7
Output
0 1 2 1 2 3 3
Hint
In the first sample case desired sequences are: 1: 1; m1 = 0; 2: 1, 2; m2 = 1; 3: 1, 3; m3 = |3 - 1| = 2. In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|. In the third sample case — consider the following intersection sequences: 1: 1; m1 = 0; 2: 1, 2; m2 = |2 - 1| = 1; 3: 1, 4, 3; m3 = 1 + |4 - 3| = 2; 4: 1, 4; m4 = 1; 5: 1, 4, 5; m5 = 1 + |4 - 5| = 2; 6: 1, 4, 6; m6 = 1 + |4 - 6| = 3; 7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.

原题

提示: 题目很长,配合着hint和案例就容易理解了。

  这是一个 一维数组 组成的链表(向量?) ,一个点可以向前、后、捷径 3个方向跳转,权值都是1.记得用最大值初始化dis【】数组。找比dis[now]更小的dis[now]替换之。

这里再说下这个bfs的复杂度,表示不会看这个题目的复杂度,好难分析。囧

代码:

#include<cstdio>
#include<cstring>
#include<iostream> using namespace std; #define MAX(x,y) (((x)>(y)) ? (x) : (y))
#define MIN(x,y) (((x) < (y)) ? (x) : (y))
#define ABS(x) ((x)>0?(x):-(x))
#define ll long long
const int inf = 0x7fffffff;
const int maxn=1e15+; ll fun(ll x)
{
ll sum=;
for(ll i=; i*i*i<=x; i++){
sum += x/(i*i*i);
}
return sum;
} int main()
{
ll l=,r=10e15,mid,ans=-;//fun(10e14) == 10e15; 所以最大的n可能取值为10e15 (极端有10e15种方法的时候)
ll m_types;
cin>>m_types;
while(l<=r){ //l=minimum n, r=maximum n ; =要加 方便找到最小的那个数
mid=l+(r-l)/;
ll types=fun(mid);
if(types < m_types)
l=mid+;
else if(types > m_types)
r=mid-;
else{ //相等也要取左半部分,因为要找最小的n(找最大的也有方法)
ans=mid;
r=mid-;
}
}
cout<<ans<<endl;
return ;
}

codeforces 361 B - Mike and Shortcuts的更多相关文章

  1. codeforces 689B B. Mike and Shortcuts(bfs)

    题目链接: B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input ...

  2. codeforces 361 E - Mike and Geometry Problem

    原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...

  3. codeforces 361 A - Mike and Cellphone

    原题: Description While swimming at the beach, Mike has accidentally dropped his cellphone into the wa ...

  4. codeforces 361 C - Mike and Chocolate Thieves

    Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u   Description Bad ...

  5. Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs

    B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...

  6. Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)

    B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  7. Codeforces 689B. Mike and Shortcuts SPFA/搜索

    B. Mike and Shortcuts time limit per test: 3 seconds memory limit per test: 256 megabytes input: sta ...

  8. codeforces 689 Mike and Shortcuts(最短路)

    codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...

  9. CodeForces 689B Mike and Shortcuts (bfs or 最短路)

    Mike and Shortcuts 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/F Description Recently ...

随机推荐

  1. 2015GitWebRTC编译实录17-audio_processing_neon编译问题解决

    编译audio_processing_neon lib时,发现只要涉及到WEBRTC_ARCH_ARM64就会出现问题,仔细回想了下,年初编译旧版本解决arm64支持问题时,好像也是要把这个注掉,但是 ...

  2. iOS红马甲项目开发过程Bug总结(1)

    在上线审核时,重新检测自己的app发现报错:"was compiled with optimization - steppingmay behave oddly; variables may ...

  3. OC前15天重点回顾

  4. php Session存储到Redis的方法

    当然要写先安装php的扩展,可参考这篇文章:Redis及PHP扩展安装 修改php.ini的设置 复制代码 代码如下: session.save_handler = redis session.sav ...

  5. std::ostringstream输出流详解

    一.简单介绍 ostringstream是C++的一个字符集操作模板类,定义在sstream.h头文件中.ostringstream类通常用于执行C风格的串流的输出操作,格式化字符串,避免申请大量的缓 ...

  6. 建造者模式(Builder)

    建造者模式(Builder)将复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示. 建造者模式通常包括下面几个角色: 1. builder:给出一个抽象接口,以规范产品对象的各个组成成分的 ...

  7. java之main

    Java中用户向系统传递参数的三种基本方式 main方法 在Java中,main()方法是Java应用程序的入口方法,也就是说,程序在运行的时候,第一个执行的方法就是main()方法,这个方法和其他的 ...

  8. python 模块openpyxl读excel文件

    使用openpyxl模块来读取excel.要注意openpyxl读不再支持旧的xls格式. 先看一下操作前的excel是什么样子吧.对了,现在只支持xlsx格式的excel读取 我现在想在第三行插入3 ...

  9. angular+bootstrap+MVC 之二,模态窗

    本例实现一个bootstrap的模态窗 1.HTML代码 <!doctype html> <!--suppress ALL --> <html ng-app=" ...

  10. 基于SpringMVC下的Rest服务框架搭建【集成Swagger】

    1.需求背景 SpringMVC本身就可以开发出基于rest风格的服务,通过简单的配置,即可快速开发出一个可供客户端调用的rest服务,通常这些服务要不就是用于手机app的开发,要不就是提供给第三方开 ...