PS一句:最终还是选择CSDN来整理发表这几年的知识点,该文章平行迁移到CSDN。因为CSDN也支持MarkDown语法了,牛逼啊!

【工匠若水 http://blog.csdn.net/yanbober】 阅读前一篇《Google Volley使用之自定义》 http://blog.csdn.net/yanbober/article/details/45307099

开源项目链接

Volley自定义 Android Developer文档

Volley主页:https://android.googlesource.com/platform/frameworks/volley

Volley仓库:Git clone https://android.googlesource.com/platform/frameworks/volley

Volley GitHub Demo:在GitHub主页搜索Volley会有很多,不过建议阅读Android Developer文档。

背景知识

在Volley使用基础那一篇最后一个知识点说到了Volley的请求架构,这里再搬过来说说。

在Android Developer上看到的这幅图:

RequestQueue会维护一个缓存调度线程(cache线程)和一个网络调度线程池(net线程),当一个Request被加到队列中的时候,cache线程会把这个请求进行筛选:如果这个请求的内容可以在缓存中找到,cache线程会亲自解析相应内容,并分发到主线程(UI)。如果缓存中没有,这个request就会被加入到另一个NetworkQueue,所有真正准备进行网络通信的request都在这里,第一个可用的net线程会从NetworkQueue中拿出一个request扔向服务器。当响应数据到的时候,这个net线程会解析原始响应数据,写入缓存,并把解析后的结果返回给主线程。

硬着头皮开始吧

直接这么看好空洞,所以直接把clone的工程导入IDE边看代码边看这个图吧。

还是按照前边的顺序分析吧,使用Volley的第一步首先是通过Volley.newRequestQueue(context)得到RequestQueue队列,那么先看下toolbox下的Volley.Java中的这个方法吧。

/**
* Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
*
* @param context A {@link Context} to use for creating the cache dir.
* @return A started {@link RequestQueue} instance.
*/
public static RequestQueue newRequestQueue(Context context) {
return newRequestQueue(context, null);
}

先看如上注释所示,创建一个默认的worker pool,并且调运RequestQueue的start方法。在这个方法里又调运了该类的另一个连个参数的重载方法,如下所示。

/**
* Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
*
* @param context A {@link Context} to use for creating the cache dir.
* @param stack An {@link HttpStack} to use for the network, or null for default.
* @return A started {@link RequestQueue} instance.
*/
public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR); String userAgent = "volley/0";
try {
String packageName = context.getPackageName();
PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
userAgent = packageName + "/" + info.versionCode;
} catch (PackageManager.NameNotFoundException e) {
} if (stack == null) {
if (Build.VERSION.SDK_INT >= 9) {
stack = new HurlStack();
} else {
// Prior to Gingerbread, HttpUrlConnection was unreliable.
// See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
}
} Network network = new BasicNetwork(stack); RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
queue.start(); return queue;
}

如上所示,该方法有两个参数,第一个Context是为了拿到当前App的Activity的一些信息,第二个参数在默认的RequestQueue newRequestQueue(Context context)方法中传递为null,也就是说在这段代码中的if (stack == null)会被执行。在这个if中对版本号进行了判断,如果版本号大于等于9就使得HttpStack对象的实例为HurlStack,如果小于9则实例为HttpClientStack。至于这里为何进行版本号判断,实际代码中的(Click Me To See)注释已经说明了。实际上HurlStack类也在toolbox中,他实现了toolbox的HttpStack接口中的HttpResponse performRequest(Request<?> request, Map<String, String> additionalHeaders)方法,其实现过程使用的是HttpURLConnection。而HttpClientStack也在toolbox中,他也实现了toolbox的HttpStack接口的HttpResponse performRequest(Request<?> request, Map<String, String> additionalHeaders)方法,不过其实现过程使用的是HttpClient而已。

其中的userAgent就是App的包名加版本号而已,传入new HttpClientStack(AndroidHttpClient.newInstance(userAgent));作为name TAG使用。

如上HttpStack创建完成之后创建了Network实例。BasicNetwork是Network接口的实现,他们都在toolbox中,BasicNetwork实现了public NetworkResponse performRequest(Request<?> request)方法,其作用是根据传入的HttpStack对象来处理网络请求。紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,然后将RequestQueue返回。RequestQueue是根目录下的一个类,其作用是一个请求调度队列调度程序的线程池。这样newRequestQueue()的方法就执行结束了。

现在再来看下根目录下RequestQueue队列的start方法,如下所示:

/**
* Starts the dispatchers in this queue.
*/
public void start() {
stop(); // Make sure any currently running dispatchers are stopped.
// Create the cache dispatcher and start it.
mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
mCacheDispatcher.start(); // Create network dispatchers (and corresponding threads) up to the pool size.
for (int i = 0; i < mDispatchers.length; i++) {
NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork, mCache, mDelivery);
mDispatchers[i] = networkDispatcher;
networkDispatcher.start();
}
}

通过注释可以看出来这里在派发队列的事务。先是创建了一个CacheDispatcher的实例,然后调用了它的start()方法,接着在一个for循环里去创建NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行(DEFAULT_NETWORK_THREAD_POOL_SIZE)四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来,其中一个CacheDispatcher是缓存线程,四个NetworkDispatcher是网络请求线程。

按照之前使用Volley可以知道,得到了RequestQueue之后,我们只需要构建出相应的Request,然后调用RequestQueue的add()方法将Request传入就可以完成网络请求操作了。也就是说add()方法的内部是核心代码了。现在看下RequestQueue的add方法,具体如下:

/**
* Adds a Request to the dispatch queue.
* @param request The request to service
* @return The passed-in request
*/
public <T> Request<T> add(Request<T> request) {
// Tag the request as belonging to this queue and add it to the set of current requests.
request.setRequestQueue(this);
synchronized (mCurrentRequests) {
mCurrentRequests.add(request);
} // Process requests in the order they are added.
request.setSequence(getSequenceNumber());
request.addMarker("add-to-queue"); // If the request is uncacheable, skip the cache queue and go straight to the network.
if (!request.shouldCache()) {
mNetworkQueue.add(request);
return request;
} // Insert request into stage if there's already a request with the same cache key in flight.
synchronized (mWaitingRequests) {
String cacheKey = request.getCacheKey();
if (mWaitingRequests.containsKey(cacheKey)) {
// There is already a request in flight. Queue up.
Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
if (stagedRequests == null) {
stagedRequests = new LinkedList<Request<?>>();
}
stagedRequests.add(request);
mWaitingRequests.put(cacheKey, stagedRequests);
if (VolleyLog.DEBUG) {
VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
}
} else {
// Insert 'null' queue for this cacheKey, indicating there is now a request in
// flight.
mWaitingRequests.put(cacheKey, null);
mCacheQueue.add(request);
}
return request;
}
}

可以看到注释所示,添加一个Request到派发队列。Request是所有请求的基类,是一个抽象类。request.setRequestQueue(this);的作用就是将请求Request关联到当前RequestQueue。然后同步操作将当前Request添加到RequestQueue对象的mCurrentRequests HashSet中做记录。通过request.setSequence(getSequenceNumber());得到当前RequestQueue中请求的个数,然后关联到当前Request。request.addMarker("add-to-queue");添加调试的Debug标记。if (!request.shouldCache())判断当前的请求是否可以缓存,如果不能缓存则直接通过mNetworkQueue.add(request);将这条请求加入网络请求队列,然后返回request;如果可以缓存的话则在通过同步操作将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。OK,那么既然默认每条请求都是可以缓存的(shouldCache返回为true),自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了。现在来看下CacheDispatcher中的run()方法,代码如下所示:

@Override
public void run() {
if (DEBUG) VolleyLog.v("start new dispatcher");
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); // Make a blocking call to initialize the cache.
mCache.initialize(); while (true) {
try {
// Get a request from the cache triage queue, blocking until
// at least one is available.
final Request<?> request = mCacheQueue.take();
request.addMarker("cache-queue-take"); // If the request has been canceled, don't bother dispatching it.
if (request.isCanceled()) {
request.finish("cache-discard-canceled");
continue;
} // Attempt to retrieve this item from cache.
Cache.Entry entry = mCache.get(request.getCacheKey());
if (entry == null) {
request.addMarker("cache-miss");
// Cache miss; send off to the network dispatcher.
mNetworkQueue.put(request);
continue;
} // If it is completely expired, just send it to the network.
if (entry.isExpired()) {
request.addMarker("cache-hit-expired");
request.setCacheEntry(entry);
mNetworkQueue.put(request);
continue;
} // We have a cache hit; parse its data for delivery back to the request.
request.addMarker("cache-hit");
Response<?> response = request.parseNetworkResponse(
new NetworkResponse(entry.data, entry.responseHeaders));
request.addMarker("cache-hit-parsed"); if (!entry.refreshNeeded()) {
// Completely unexpired cache hit. Just deliver the response.
mDelivery.postResponse(request, response);
} else {
// Soft-expired cache hit. We can deliver the cached response,
// but we need to also send the request to the network for
// refreshing.
request.addMarker("cache-hit-refresh-needed");
request.setCacheEntry(entry); // Mark the response as intermediate.
response.intermediate = true; // Post the intermediate response back to the user and have
// the delivery then forward the request along to the network.
mDelivery.postResponse(request, response, new Runnable() {
@Override
public void run() {
try {
mNetworkQueue.put(request);
} catch (InterruptedException e) {
// Not much we can do about this.
}
}
});
}
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
}
}

首先通过Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);设置线程优先级,然后通过mCache.initialize(); 初始化缓存块,其中mCache是由Volley.java中的newRequestQueue(Context context, HttpStack stack)方法中实例化传入的,其Cache接口的实现为new DiskBasedCache(cacheDir),其中cacheDir默认在Volley.java中不设置为/data/data/app-package/cache/volley/。

接下来由while (true)可以发现缓存线程是一直在执行,其中通过mQuit标记进制是否结束线程的操作。mCacheQueue.take()从阻塞队列获取最前面的一个request,没有request就阻塞等待。接着通过mCache.get(request.getCacheKey());尝试从缓存中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据即可。在这个过程中调运了parseNetworkResponse()方法来对数据进行解析,再往后就是将解析出来的数据进行回调了。现在先来看下Request抽象基类的这部分代码:

/**
* Subclasses must implement this to parse the raw network response
* and return an appropriate response type. This method will be
* called from a worker thread. The response will not be delivered
* if you return null.
* @param response Response from the network
* @return The parsed response, or null in the case of an error
*/
abstract protected Response<T> parseNetworkResponse(NetworkResponse response);

通过注释可以看到他就是一个解析模块的功能。

上面说了,当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来,其中一个CacheDispatcher是缓存线程,四个NetworkDispatcher是网络请求线程。CacheDispatcher的run方法刚才已经大致分析了,解析来看下NetworkDispatcher中是怎么处理网络请求队列的,具体代码如下所示:

@Override
public void run() {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
while (true) {
long startTimeMs = SystemClock.elapsedRealtime();
Request<?> request;
try {
// Take a request from the queue.
request = mQueue.take();
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
} try {
request.addMarker("network-queue-take"); // If the request was cancelled already, do not perform the
// network request.
if (request.isCanceled()) {
request.finish("network-discard-cancelled");
continue;
} addTrafficStatsTag(request); // Perform the network request.
NetworkResponse networkResponse = mNetwork.performRequest(request);
request.addMarker("network-http-complete"); // If the server returned 304 AND we delivered a response already,
// we're done -- don't deliver a second identical response.
if (networkResponse.notModified && request.hasHadResponseDelivered()) {
request.finish("not-modified");
continue;
} // Parse the response here on the worker thread.
Response<?> response = request.parseNetworkResponse(networkResponse);
request.addMarker("network-parse-complete"); // Write to cache if applicable.
// TODO: Only update cache metadata instead of entire record for 304s.
if (request.shouldCache() && response.cacheEntry != null) {
mCache.put(request.getCacheKey(), response.cacheEntry);
request.addMarker("network-cache-written");
} // Post the response back.
request.markDelivered();
mDelivery.postResponse(request, response);
} catch (VolleyError volleyError) {
volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
parseAndDeliverNetworkError(request, volleyError);
} catch (Exception e) {
VolleyLog.e(e, "Unhandled exception %s", e.toString());
VolleyError volleyError = new VolleyError(e);
volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
mDelivery.postError(request, volleyError);
}
}
}

和CacheDispatcher差不多,如上可以看见一个类似的while(true)循环,说明网络请求线程也是在不断运行的。

如上通过mNetwork.performRequest(request);代码来发送网络请求,而Network是一个接口,这里具体的实现之前已经分析是BasicNetwork,所以先看下它的performRequest()方法,如下所示:

NetWork接口的代码:

public interface Network {
/**
* Performs the specified request.
* @param request Request to process
* @return A {@link NetworkResponse} with data and caching metadata; will never be null
* @throws VolleyError on errors
*/
public NetworkResponse performRequest(Request<?> request) throws VolleyError;
}

上面说了,就是执行指定的请求。他的BasicNetwork实现子类如下:

@Override
public NetworkResponse performRequest(Request<?> request) throws VolleyError {
long requestStart = SystemClock.elapsedRealtime();
while (true) {
HttpResponse httpResponse = null;
byte[] responseContents = null;
Map<String, String> responseHeaders = Collections.emptyMap();
try {
// Gather headers.
Map<String, String> headers = new HashMap<String, String>();
addCacheHeaders(headers, request.getCacheEntry());
httpResponse = mHttpStack.performRequest(request, headers);
StatusLine statusLine = httpResponse.getStatusLine();
int statusCode = statusLine.getStatusCode(); responseHeaders = convertHeaders(httpResponse.getAllHeaders());
// Handle cache validation.
if (statusCode == HttpStatus.SC_NOT_MODIFIED) { Entry entry = request.getCacheEntry();
if (entry == null) {
return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,
responseHeaders, true,
SystemClock.elapsedRealtime() - requestStart);
} // A HTTP 304 response does not have all header fields. We
// have to use the header fields from the cache entry plus
// the new ones from the response.
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
entry.responseHeaders.putAll(responseHeaders);
return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,
entry.responseHeaders, true,
SystemClock.elapsedRealtime() - requestStart);
} // Some responses such as 204s do not have content. We must check.
if (httpResponse.getEntity() != null) {
responseContents = entityToBytes(httpResponse.getEntity());
} else {
// Add 0 byte response as a way of honestly representing a
// no-content request.
responseContents = new byte[0];
} // if the request is slow, log it.
long requestLifetime = SystemClock.elapsedRealtime() - requestStart;
logSlowRequests(requestLifetime, request, responseContents, statusLine); if (statusCode < 200 || statusCode > 299) {
throw new IOException();
}
return new NetworkResponse(statusCode, responseContents, responseHeaders, false,
SystemClock.elapsedRealtime() - requestStart);
} catch (SocketTimeoutException e) {
attemptRetryOnException("socket", request, new TimeoutError());
} catch (ConnectTimeoutException e) {
attemptRetryOnException("connection", request, new TimeoutError());
} catch (MalformedURLException e) {
throw new RuntimeException("Bad URL " + request.getUrl(), e);
} catch (IOException e) {
int statusCode = 0;
NetworkResponse networkResponse = null;
if (httpResponse != null) {
statusCode = httpResponse.getStatusLine().getStatusCode();
} else {
throw new NoConnectionError(e);
}
VolleyLog.e("Unexpected response code %d for %s", statusCode, request.getUrl());
if (responseContents != null) {
networkResponse = new NetworkResponse(statusCode, responseContents,
responseHeaders, false, SystemClock.elapsedRealtime() - requestStart);
if (statusCode == HttpStatus.SC_UNAUTHORIZED ||
statusCode == HttpStatus.SC_FORBIDDEN) {
attemptRetryOnException("auth",
request, new AuthFailureError(networkResponse));
} else {
// TODO: Only throw ServerError for 5xx status codes.
throw new ServerError(networkResponse);
}
} else {
throw new NetworkError(networkResponse);
}
}
}
}

这个方法是网络请求的具体实现,也是一个大while循环,其中mHttpStack.performRequest(request, headers);代码中的mHttpStack是Volley的newRequestQueue()方法中创建的实例,前面已经说过,这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,然后把服务器返回的数据组装成一个NetworkResponse对象进行返回。在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,同时将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。

前面你可以看到在NetWorkDispatcher的run中最后执行了mDelivery.postResponse(request, response);,也就是说在解析完了NetworkResponse中的数据之后,又会调用ExecutorDelivery(ResponseDelivery接口的实现类)的postResponse()方法来回调解析出的数据,具体代码如下所示:

@Override
public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
request.markDelivered();
request.addMarker("post-response");
mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
}

这里可以看见在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的:

/**
* A Runnable used for delivering network responses to a listener on the
* main thread.
*/
@SuppressWarnings("rawtypes")
private class ResponseDeliveryRunnable implements Runnable {
private final Request mRequest;
private final Response mResponse;
private final Runnable mRunnable; public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
mRequest = request;
mResponse = response;
mRunnable = runnable;
} @SuppressWarnings("unchecked")
@Override
public void run() {
// If this request has canceled, finish it and don't deliver.
if (mRequest.isCanceled()) {
mRequest.finish("canceled-at-delivery");
return;
} // Deliver a normal response or error, depending.
if (mResponse.isSuccess()) {
mRequest.deliverResponse(mResponse.result);
} else {
mRequest.deliverError(mResponse.error);
} // If this is an intermediate response, add a marker, otherwise we're done
// and the request can be finished.
if (mResponse.intermediate) {
mRequest.addMarker("intermediate-response");
} else {
mRequest.finish("done");
} // If we have been provided a post-delivery runnable, run it.
if (mRunnable != null) {
mRunnable.run();
}
}
}

这段代码里的run方法中可以看到如下一部分细节:

// Deliver a normal response or error, depending.
if (mResponse.isSuccess()) {
mRequest.deliverResponse(mResponse.result);
} else {
mRequest.deliverError(mResponse.error);
}

这段代码是最核心的,明显可以看到通过mRequest的deliverResponse或者deliverError将反馈发送到回调到UI线程。这也是你重写实现的接口方法。

再来整体看下

现在是该回过头去看背景知识模块了,再看下那幅官方图,对比就明白咋回事了。结合上图和如上分析可以知道:

  1. 当一个RequestQueue被成功申请后会开启一个CacheDispatcher和4个默认的NetworkDispatcher。

  2. CacheDispatcher缓存调度器最为第一层缓冲,开始工作后阻塞的从缓存序列mCacheQueue中取得请求;对于已经取消的请求,标记为跳过并结束这个请求;新的或者过期的请求,直接放入mNetworkQueue中由N个NetworkDispatcher进行处理;已获得缓存信息(网络应答)却没有过期的请求,由Request的parseNetworkResponse进行解析,从而确定此应答是否成功。然后将请求和应答交由Delivery分发者进行处理,如果需要更新缓存那么该请求还会被放入mNetworkQueue中。

  3. 将请求Request add到RequestQueue后对于不需要缓存的请求(需要额外设置,默认是需要缓存)直接丢入mNetworkQueue交给N个NetworkDispatcher处理;对于需要缓存的,新的请求加到mCacheQueue中给CacheDispatcher处理;需要缓存,但是缓存列表中已经存在了相同URL的请求,放在mWaitingQueue中做暂时处理,等待之前请求完毕后,再重新添加到mCacheQueue中。

  4. 网络请求调度器NetworkDispatcher作为网络请求真实发生的地方,对消息交给BasicNetwork进行处理,同样的,请求和结果都交由Delivery分发者进行处理。

  5. Delivery分发者实际上已经是对网络请求处理的最后一层了,在Delivery对请求处理之前,Request已经对网络应答进行过解析,此时应答成功与否已经设定;而后Delivery根据请求所获得的应答情况做不同处理;若应答成功,则触发deliverResponse方法,最终会触发开发者为Request设定的Listener;若应答失败,则触发deliverError方法,最终会触发开发者为Request设定的ErrorListener;处理完后,一个Request的生命周期就结束了,Delivery会调用Request的finish操作,将其从mRequestQueue中移除,与此同时,如果等待列表中存在相同URL的请求,则会将剩余的层级请求全部丢入mCacheQueue交由CacheDispatcher进行处理。

至此所有搞定。

PPPS一句:通过上面原理分析之后总结发现,推荐整个App全局持有一个RequestQueue的做法,这样会有相对比较高的性能效率。


走读代码时参考博客链接

Google Volley框架源码走读的更多相关文章

  1. 【安卓网络请求开源框架Volley源码解析系列】定制自己的Request请求及Volley框架源码剖析

    通过前面的学习我们已经掌握了Volley的基本用法,没看过的建议大家先去阅读我的博文[安卓网络请求开源框架Volley源码解析系列]初识Volley及其基本用法.如StringRequest用来请求一 ...

  2. Apache Spark源码走读之16 -- spark repl实现详解

    欢迎转载,转载请注明出处,徽沪一郎. 概要 之所以对spark shell的内部实现产生兴趣全部缘于好奇代码的编译加载过程,scala是需要编译才能执行的语言,但提供的scala repl可以实现代码 ...

  3. Apache Spark源码走读之13 -- hiveql on spark实现详解

    欢迎转载,转载请注明出处,徽沪一郎 概要 在新近发布的spark 1.0中新加了sql的模块,更为引人注意的是对hive中的hiveql也提供了良好的支持,作为一个源码分析控,了解一下spark是如何 ...

  4. Apache Spark源码走读之7 -- Standalone部署方式分析

    欢迎转载,转载请注明出处,徽沪一郎. 楔子 在Spark源码走读系列之2中曾经提到Spark能以Standalone的方式来运行cluster,但没有对Application的提交与具体运行流程做详细 ...

  5. Gin框架源码解析

    Gin框架源码解析 Gin框架是golang的一个常用的web框架,最近一个项目中需要使用到它,所以对这个框架进行了学习.gin包非常短小精悍,不过主要包含的路由,中间件,日志都有了.我们可以追着代码 ...

  6. iOS开发之Masonry框架源码深度解析

    Masonry是iOS在控件布局中经常使用的一个轻量级框架,Masonry让NSLayoutConstraint使用起来更为简洁.Masonry简化了NSLayoutConstraint的使用方式,让 ...

  7. TCP/UDP简易通信框架源码,支持轻松管理多个TCP服务端(客户端)、UDP客户端

    目录 说明 TCP/UDP通信主要结构 管理多个Socket的解决方案 框架中TCP部分的使用 框架中UDP部分的使用 框架源码结构 补充说明 源码地址 说明 之前有好几篇博客在讲TCP/UDP通信方 ...

  8. 介绍开源的.net通信框架NetworkComms框架 源码分析

    原文网址: http://www.cnblogs.com/csdev Networkcomms 是一款C# 语言编写的TCP/UDP通信框架  作者是英国人  以前是收费的 售价249英镑 我曾经花了 ...

  9. CI框架源码阅读笔记5 基准测试 BenchMark.php

    上一篇博客(CI框架源码阅读笔记4 引导文件CodeIgniter.php)中,我们已经看到:CI中核心流程的核心功能都是由不同的组件来完成的.这些组件类似于一个一个单独的模块,不同的模块完成不同的功 ...

随机推荐

  1. C#7.0中有新特性

    以下将是 C# 7.0 中所有计划的语言特性的描述.随着 Visual Studio “15” Preview 4 版本的发布,这些特性中的大部分将活跃起来.现在是时候来展示这些特性,你也告诉借此告诉 ...

  2. change和onchange触发为什么不立马生效?

    change和onchange触发了,为什么不立马生效?那是因为他们本身不是当文本改变就立马触发的事件,而是当文本改变了,blur离开了表单才触发. 如果要加上触发请结合keyup,keydown,o ...

  3. iOS:命令行方式使用OSChina托管私有代码

    一.介绍 在项目开发中,使用版本控制工具是必不可少的开发工具,它可以帮助我们程序员写完代码后及时提交备份,防止因个人操作导致代码被误删除了或者丢失了,安全可靠.同时,使用版本控制器工具也可以很方便的进 ...

  4. overflow遭遇场景

    没有设置高度而由内容撑高的子div在遇到固定高度的父div,想做一个离上边缘有间距的效果,给padding-top会同时撑大父div,给margin-top会把父div拉下来,这时候的子div像是紧紧 ...

  5. Struts2(三):新建Struts2工程

    下载的struts2xx-all.zip包对搭建项目的作用 一般情况下,我们下载一个Struts2的full包时,并不知道新建过程中需要哪些包,那么这时我们可以从下载的包中解压出的目录\apps\st ...

  6. Latex 分段函数

    Latex里面分段函数的输入: \begin{equation}     P_{r-j}=    \begin{cases}    0&\mbox{if $r-j$ is odd}\\     ...

  7. svg学习(三)rect

    <rect> 标签 <rect> 标签可用来创建矩形,以及矩形的变种. 要理解它的工作原理,请把这些代码拷贝到记事本,然后保存为 "rect1.svg" 文 ...

  8. javascript序列化json 第二篇

    这一节主要是记录父子关系的JSON生成,废话不多说,直接上代码. public partial class _default : System.Web.UI.Page { public static ...

  9. linux vagrant visual box 虚拟机比较慢

    提现在跑本地虚拟机开发环境很慢,直接影响工作效率,网上搜了,亲测可用. cite:     http://leo108.com/pid-2072.asp 在 vagrantfile中加入 config ...

  10. 0518 Scrum项目5.0

    一,组员任务完成情况 首页设计初步完成但是需要优化界面,只能简单的输出信息和在首页进行登录.界面极其简单. 鸡汤版面设计有困难,问题在于用何种形式来管理用户的数据上传,但是经过小组间的讨论确定设计方向 ...