5102 Mobile Service 0x50「动态规划」例题

描述

一个公司有三个移动服务员,最初分别在位置1,2,3处。
如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个地方去。某一时刻只有一个员工能移动,且不允许在同样的位置出现两个员工。从 p 到 q 移动一个员工,需要花费 c(p,q)。这个函数不一定对称,但保证 c(p,p)=0。
给出N个请求,请求发生的位置分别为 p_1~p_N。公司必须按顺序依次满足所有请求,目标是最小化公司花费,请你帮忙计算这个最小花费。N≤1000,位置是1~200的整数。

输入格式

第一行有两个整数L,N(3<=L<=200, 1<=N<=1000)。L是位置数;N是请求数。每个位置从1到L编号。下L行每行包含L个非负整数。第i+1行的第j个数表示c(i,j) ,并且它小于2000。最后一行包含N个数,是请求列表。一开始三个服务员分别在位置1,2,3。

输出格式

一个数M,表示最小服务花费。

样例输入

5 9
0 1 1 1 1
1 0 2 3 2
1 1 0 4 1
2 1 5 0 1
4 2 3 4 0
4 2 4 1 5 4 3 2 1

样例输出

5

题意:

有n个点标号为1-n,现在有三个人站在1,2,3处

给出一个矩阵 表示从i到j需要的花费

给出m个询问,每次给一个pos表示这一次pos要有人

问 m次询问总的cost 是多少

思路:

dp[i, x, y, z]表示对于第i次查询,服务员分别在xyz时的总花费

那么第i+1次时,只有三种可能。

并且可以发现,其实只需要三维即可,因为三个服务员中一定有一个位置是确定的

他在i+1时一定是在pi,并且服务员之间交换位置是不影响答案的

所以i+1时只需要维护dp[i+1, x, y], dp[i+1, pi, y], dp[i+1, x, pi]

dp[i+1, x, y] = min(dp[i+1, x, y], dp[i, x, y] + c(pi, pi+1), z从pi到pi+1

dp[i+1, pi, y] = min(dp[i+1,pi, y], dp[i, x, y] + c(x, pi+1),x到pi+1,z与x交换位置

dp[i+1, x, pi] = min(dp[i+1,y, pi], dp[i, x, y] + c(y, pi+1),y到pi+1, z与y交换位置

需要判断一下 xyz中是否有与pi+1相同的点,若有则只有一种走法了

虐狗宝典笔记:

1.求解线性DP问题,一般先确定“阶段”。若“阶段”不足以表示一个状态,则可以把所需的附加信息也作为状态的维度。

转移时,若总是从一个阶段转移到下一个阶段,则没有必要关心附加信息维度的大小变化情况,因为“无后效性”已经由“阶段”保证

2.在确定dp状态时,要选择最小的能够覆盖整个状态空间的“维度集合”

若DP状态由多个维度构成,则应检查这些维度之间能否相互导出,用尽量少的维度覆盖整个状态空间,排除冗余维度。

 //#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long int LL; const int maxn = ;
int c[maxn][maxn], dp[][maxn][maxn], p[];
int l, n; int main()
{
scanf("%d%d", &l, &n);
for(int i = ; i <= l; i++){
for(int j = ; j <= l; j++){
scanf("%d", &c[i][j]);
}
}
for(int i = ; i <= n; i++){
scanf("%d", &p[i]);
}
memset(dp, 0x3f, sizeof(dp)); dp[][][] = ;
p[] = ;
for(int i = ; i <= n; i++){
for(int x = ; x <= l; x++){
for(int y = ; y <= l; y++){
if(dp[i - ][x][y] != inf){
int z = p[i - ];
if(y != p[i] && x != p[i]){
dp[i][x][y] = min(dp[i - ][x][y] + c[z][p[i]], dp[i][x][y]);
}
if(y != p[i] && z != p[i]){
dp[i][y][z] = min(dp[i - ][x][y] + c[x][p[i]], dp[i][y][z]);
}
if(x != p[i] && z != p[i]){
dp[i][x][z] = min(dp[i - ][x][y] + c[y][p[i]], dp[i][x][z]);
}
dp[i - ][x][y] = 0x3f3f3f3f;
}
}
}
} int ans = inf;
for(int x = ; x <= l; x++){
for(int y = ; y <= l; y++){
ans = min(ans, dp[n][x][y]);
}
}
printf("%d\n", ans);
return ;
}

CH5102 Mobile Service【线性dp】的更多相关文章

  1. [tyvj 1061] Mobile Service (线性dp 滚动数组)

    3月15日第一题! 题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目描述 一个公司有三个移动服务员.如果某个地方有一个请求,某个员工必须 ...

  2. CH5102 Mobile Service

    CH5102 Mobile Service 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个地方去.某一时刻只有一 ...

  3. CH 5102 Mobile Service(线性DP)

    CH 5102 Mobile Service \(solution:\) 这道题很容易想到DP,因为题目里已经说了要按顺序完成这些请求.所以我们可以线性DP,但是这一题的状态不是很好设,因为数据范围有 ...

  4. 0x51 线性DP

    数据结构没什么好写的..分块和整体二分还有点分学得很懂..果然我还是比较适合这些东西 poj2279 奇怪题,我的想法就是五维记录最边上的一斜排,会M,结果的的确确是锻炼思维的,正解并不是DP2333 ...

  5. 线性dp(记忆化搜索)——cf953C(经典好题dag和dp结合)

    非常好的题!和spoj 的 Mobile Service有点相似,用记忆化搜索很容易解决 看了网上的题解,也是减掉一维,刚好可以开下数组 https://blog.lucien.ink/archive ...

  6. TYVJ1061 Mobile Service

    P1061 Mobile Service 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 一个公司有三个移动服务员.如果某个地方有一个请求,某个员工必须赶到那 ...

  7. Unable to create Azure Mobile Service: Error 500

    I had to go into my existing azure sql database server and under the configuration tab select " ...

  8. 如何使用新浪微博账户进行应用登录验证(基于Windows Azure Mobile Service 集成登录验证)

    使用三方账号登录应用应该对大家来说已经不是什么新鲜事儿了,但是今天为什么还要在这里跟大家聊这个话题呢,原因很简单 Windows Azure Mobiles Service Authenticatio ...

  9. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

随机推荐

  1. U3D安卓下OnApplicationQuit不执行的解决方法

    安卓下当你按Home键,程序会进入暂停状态.所以只能改成调用OnApplicationPause. Unity论坛上说实现IDispose接口也可以,似乎IOS可以,但安卓测试了,无效.

  2. [elk]elk的诸多beats&&kibana插件

    elk的诸多beats 参考: https://www.elastic.co/guide/en/beats/libbeat/current/community-beats.html jmxproxyb ...

  3. location 设定某个文件的过期时间,并不记录访问日志

    网页的根目录本来是: 6 root /app/www/default; [root@web01 default]# cat /app/server/nginx/conf/vhosts/default. ...

  4. Java线程停止interrupt()方法

    程序是很简易的.然而,在编程人员面前,多线程呈现出了一组新的难题,如果没有被恰当的解决,将导致意外的行为以及细微的.难以发现的错误.在本篇文章中,我们针对这些难题之一:如何中断一个正在运行的线程. 中 ...

  5. 在容器中使用erase函数,迭代器的处理

    在c++编程中,用到迭代器的时候,往往不知道如何删除当前迭代器指向的元素. erase函数:   返回下一个迭代器. 只使用vector的erase函数,记住,该函数是迭代器失效,返回下一个迭代器. ...

  6. poj3261(后缀数组)

    题意:给出一串长度为n的字符,再给出一个k值,要你求重复次数大于等于k次的最长子串长度........ 思路:其实也非常简单,直接求出height值,然后将它分组,二分答案......结果就出来了.. ...

  7. python学习笔记(1)--遍历txt文件,正则匹配替换文字

    遍历一个文件夹,把里面所有txt文件里的[]里的朗读时间删除,也就是替换为空. import os import re import shutil #os文件操作,re正则,shutil复制粘贴 pa ...

  8. [boostrap]debian下为arm创建debian和emdebian文件系统

    转自:http://www.cnblogs.com/qiaoqiao2003/p/3738552.html Debian系统本身包含对arm的支持,其包含的软件包最多,但是最终的文件系统要大一些. e ...

  9. xeno 实时性能测试 在100us的采样周期的测试数据

    1 xeno 用户层测试时间: root@sama5d3-linux:/usr/bin latency -t0 -T25 -p100== Sampling period: 100 us== Test ...

  10. linphone 调试信息

    root@phyCORE-AM335x:~ linphonec -V -d 6INFO: no logfile, logging to stdoutortp-message-oRTP-0.20.0 i ...