bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队
Time Limit: 4 Sec Memory Limit: 64 MB
Description

Input

Output

Sample Input
-1 10 -20
2 2 3 4
Sample Output
HINT

Source
dp方程:
如果j>k且j比k更优

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000100
#define db double
char xB[<<],*xS=xB,*xTT=xB;
#define getc() (xS==xTT&&(xTT=(xS=xB)+fread(xB,1,1<<15,stdin),xS==xTT)?0:*xS++)
#define isd(c) (c>='0'&&c<='9')
inline int read(){
char xchh;
int xaa;
while(xchh=getc(),!isd(xchh));(xaa=xchh-'');
while(xchh=getc(),isd(xchh))xaa=xaa*+xchh-'';return xaa;
}
int n,a,b,c,x[N],q[N],l,r,t;
ll f[N],sum[N];
inline ll sqr(ll x){return x*x;}
inline db cal(int j,int k){return (db)(f[j]+a*sqr(sum[j])-b*sum[j]-f[k]-a*sqr(sum[k])+b*sum[k])/(db)(*a*(sum[j]-sum[k]));}
int main()
{
scanf("%d%d%d%d",&n,&a,&b,&c);
for(int i=;i<=n;i++) x[i]=read();
for(int i=;i<=n;i++) sum[i]=sum[i-]+x[i];
for(int i=;i<=n;i++)
{
while(l<r&&cal(q[l],q[l+])<sum[i]) l++;
t=q[l];
f[i]=f[t]+a*sqr(sum[i]-sum[t])+b*(sum[i]-sum[t])+c;
while(l<r&&cal(q[r-],q[r])>cal(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}
bzoj 1911: [Apio2010]特别行动队 -- 斜率优化的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3191 Solved: 1450[Submit][Statu ...
- BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )
sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
- [APIO2010]特别行动队 --- 斜率优化DP
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...
- bzoj 1911: [Apio2010]特别行动队【斜率优化dp】
仔细想想好像没学过斜率优化.. 很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \) 然后考虑j的选取,如果选j优于选k,那么: ...
- bzoj1911 [Apio2010]特别行动队——斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...
- APIO2010 特别行动队 & 斜率优化DP算法笔记
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...
- bzoj 1911: [Apio2010]特别行动队
#include<cstdio> #include<iostream> #define M 1000009 #define ll long long using namespa ...
随机推荐
- CRF++进行中文分词实例
工具包:https://taku910.github.io/crfpp/#tips 语料:http://sighan.cs.uchicago.edu/bakeoff2005/ 安装: 1)下载linu ...
- [Leetcode] Sum 系列
Sum 系列题解 Two Sum题解 题目来源:https://leetcode.com/problems/two-sum/description/ Description Given an arra ...
- python常用运维脚本实例【转】
file是一个类,使用file('file_name', 'r+')这种方式打开文件,返回一个file对象,以写模式打开文件不存在则会被创建.但是更推荐使用内置函数open()来打开一个文件 . 首先 ...
- Ubuntu连接多台Ubuntu server的问题
如果您用的是虚拟机上安装的几个Ubuntu server进行IP配置 要注意以下几点: <1>虚拟机上安装完成Ubuntu server 默认的网络连接方式是NAT ,应该改成桥接网卡 ( ...
- [ python ] 字符串的操作及作业题
字符串的操作方法 capitalize() : 首字母大写 s1 = 'my heart will go on' print(s1.capitalize()) # 首字母大写 # 执行结果: # My ...
- JDK动态代理小例子
一个小汽车,有一个跑run()的方法,我们想使用jdk动态代理使小汽车执行run之前 加点油,run之后洗车. 有四个类,接口Car(小汽车)Kayan(具体实现类(卡宴)) CarProxy(汽车的 ...
- 连接数据库:ERROR:The server time zone value '?й???????' is unrecognized or represents more than one time zone. You must configure either the server or JDBC driver (via the serverTimezone configuration prop
本打算在maven项目中配置mybatis试试看,想到mybatis如果不是在容器中运行,那么他的事务控制实际上可以使用的是jdbc的提交和回滚,这就要在pom.xml文件中配置mysql-conne ...
- C/C++面试题目一
C/C++开发工程师面试题目(一)(附答案分析) 推荐:自己根据在面试中碰到做过的一些题目以及总结的题目,希望对面试的同学有所帮助. 一. 选择题 1. 下列类中( )不是输入输出流类iostrea ...
- 关于ZIP自动打包的进一步进化思路
http://blog.163.com/long200259@126/blog/static/11288755920093120529157/
- [loj6039]「雅礼集训 2017 Day5」珠宝 dp+决策单调性+分治
https://loj.ac/problem/6039 我们设dp[i][j]表示考虑所有价值小于等于i的物品,带了j块钱的最大吸引力. 对于ci相同的物品,我们一定是从大到小选k个物品,又发现最大的 ...