bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队
Time Limit: 4 Sec Memory Limit: 64 MB
Description
Input
Output
Sample Input
-1 10 -20
2 2 3 4
Sample Output
HINT
Source
dp方程:
如果j>k且j比k更优
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000100
#define db double
char xB[<<],*xS=xB,*xTT=xB;
#define getc() (xS==xTT&&(xTT=(xS=xB)+fread(xB,1,1<<15,stdin),xS==xTT)?0:*xS++)
#define isd(c) (c>='0'&&c<='9')
inline int read(){
char xchh;
int xaa;
while(xchh=getc(),!isd(xchh));(xaa=xchh-'');
while(xchh=getc(),isd(xchh))xaa=xaa*+xchh-'';return xaa;
}
int n,a,b,c,x[N],q[N],l,r,t;
ll f[N],sum[N];
inline ll sqr(ll x){return x*x;}
inline db cal(int j,int k){return (db)(f[j]+a*sqr(sum[j])-b*sum[j]-f[k]-a*sqr(sum[k])+b*sum[k])/(db)(*a*(sum[j]-sum[k]));}
int main()
{
scanf("%d%d%d%d",&n,&a,&b,&c);
for(int i=;i<=n;i++) x[i]=read();
for(int i=;i<=n;i++) sum[i]=sum[i-]+x[i];
for(int i=;i<=n;i++)
{
while(l<r&&cal(q[l],q[l+])<sum[i]) l++;
t=q[l];
f[i]=f[t]+a*sqr(sum[i]-sum[t])+b*(sum[i]-sum[t])+c;
while(l<r&&cal(q[r-],q[r])>cal(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}
bzoj 1911: [Apio2010]特别行动队 -- 斜率优化的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3191 Solved: 1450[Submit][Statu ...
- BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )
sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
- [APIO2010]特别行动队 --- 斜率优化DP
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...
- bzoj 1911: [Apio2010]特别行动队【斜率优化dp】
仔细想想好像没学过斜率优化.. 很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \) 然后考虑j的选取,如果选j优于选k,那么: ...
- bzoj1911 [Apio2010]特别行动队——斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...
- APIO2010 特别行动队 & 斜率优化DP算法笔记
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...
- bzoj 1911: [Apio2010]特别行动队
#include<cstdio> #include<iostream> #define M 1000009 #define ll long long using namespa ...
随机推荐
- JavaScript实现水平进度条拖拽效果
<html> <head> <meta charset="UTF-8"> <title>Document</title> ...
- 如何将vmworkstation的虚机导成ovf模版
如何将vmworkstation的虚机导成ovf模版 最近碰见一个事情挺烦的苦恼了我好长一段时间,是这样的公司要进行攻防演练需要搭建一个owaps的靶站练手,环境我在我的电脑上已经搭好了(vmwork ...
- Python递归 — — 二分查找、斐波那契数列、三级菜单
一.二分查找 二分查找也称之为折半查找,二分查找要求线性表(存储结构)必须采用顺序存储结构,而且表中元素顺序排列. 二分查找: 1.首先,将表中间位置的元素与被查找元素比较,如果两者相等,查找结束,否 ...
- selenium grid应用1-多浏览器执行用例
driver =webdriver.Remote(command_executor=’http://127.0.0.1:4444/wd/hub’, desired_capabilities=Desir ...
- Groovy 与 DSL
一:DSL 概念 指的是用于一个特定领域的语言(功能领域.业务领域).在这个给出的概念中有 3个重点: 只用于一个特定领域,而非所有通用领域,比如 Java / C++就是用于通用领域,而不可被称为 ...
- Shell语言系列之一:文件处理
前言   标准输入/输出可能是软件工具设计原则里最基本的观念了.有很多UNIX程序都遵循这一设计历练.默认情况下,他们会读取标准输入,写入标准输出,并将错误信息传递给标准错误输出. & ...
- Codeigniter处理用户登录验证后URL跳转
涉及到My_Controller.php以及登录验证模块User.php,代码如下: My_Controller.php class MY_Controller extends CI_Controll ...
- JavaScript中继承的实现
继承是类和类之间的关系,继承使得子类别具有父类别的属性和方法. js里常用的如下两种继承方式: 原型链继承(对象间的继承) 类式继承(构造函数间的继承) 由于js不像java那样是真正面向对象的语言, ...
- 第六章:加载或保存JSON数据
加载或保存JSON数据 Knockout可以实现很复杂的客户端交互,但是几乎所有的web应用程序都要和服务器端交换数据(至少为了本地存储需要序列化数据),交换数据最方便的就是使用JSON格式 – 大多 ...
- jquery的一个模板引擎-zt
jQuery-jTemplate.js下载:http://jtemplates.tpython.com/ 一 , 简单介绍 它是一个基于jQuery开发的javascript模板引擎.它主要的作用如下 ...