2957: 楼房重建

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1753  Solved: 841

Description

  小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
  为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
  施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大---修建,也可以比原来小---拆除,甚至可以保持不变---建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?

Input

  第一行两个正整数N,M
  接下来M行,每行两个正整数Xi,Yi

Output

  M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋

Sample Input

3 4
2 4
3 6
1 1000000000
1 1

Sample Output

1
1
1
2
数据约定
  对于所有的数据1<=Xi<=N,1<=Yi<=10^9
N,M<=100000

HINT

Source

【分析】

  其实这个很明显是线段树维护的,但是维护方法和求值方法其实都不是很传统,所以我想不到啊。。。

  分析题目知道先把每栋楼跟原点的三角形的斜率求出来,一个楼有贡献当且仅当他的斜率比他前面的楼的斜率都大,即大于前面的楼的斜率的最大值。

  线段树维护一个ans和mx,mx表示这个区间的斜率的最大值,ans表示只考虑这个区间的时候的答案。

  更新ans的时候要带一个外区间的mx,表示前面区间的mx

  若这个mx>=左孩子的mx,则左边都不能选,只考虑右边,变成子问题。

  若这个mx<左孩子的mx,则为整个区间的ans-左区间的ans+左区间带mx时的ans(这个也很容易意会吧)

  【说明我的线段树还是有漏洞啊TAT

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 100010 double mymax(double x,double y) {return x>y?x:y;} struct node
{
int l,r,lc,rc;
double mx;
int ans;
}tr[Maxn*];
int len; int build(int l,int r)
{
int x=++len;
tr[x].l=l;tr[x].r=r;tr[x].mx=;tr[x].ans=;
if(l!=r)
{
int mid=(l+r)>>;
tr[x].lc=build(l,mid);
tr[x].rc=build(mid+,r);
}
else tr[x].lc=tr[x].rc=;
return x;
} int query(int x,double mx)
{
if(tr[x].l==tr[x].r) return tr[x].mx>mx;
int mid=(tr[x].l+tr[x].r)>>;
if(tr[tr[x].lc].mx<mx) return query(tr[x].rc,mx);
return tr[x].ans-tr[tr[x].lc].ans+query(tr[x].lc,mx);
} void change(int x,int y,double z)
{
if(tr[x].l==tr[x].r)
{
tr[x].mx=z;
tr[x].ans=;
return;
}
int mid=(tr[x].l+tr[x].r)>>;
if(y<=mid) change(tr[x].lc,y,z);
else change(tr[x].rc,y,z);
tr[x].mx=mymax(tr[tr[x].lc].mx,tr[tr[x].rc].mx);
tr[x].ans=tr[tr[x].lc].ans+query(tr[x].rc,tr[tr[x].lc].mx);
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
build(,n);
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
change(,x,y*1.0/x);
printf("%d\n",tr[].ans);
}
return ;
}

2017-03-25 09:50:54

【BZOJ 2957】 2957: 楼房重建 (线段树)的更多相关文章

  1. bzoj 2957: 楼房重建 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施 ...

  2. bzoj 2957 楼房重建 (线段树+思路)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对 ...

  3. bzoj 2957: 楼房重建 ——线段树

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  4. BZOJ 2957 楼房重建(线段树区间合并)

    一个显而易见的结论是,这种数字的值是单调递增的.我们修改一个数只会对这个数后面的数造成影响.考虑线段树划分出来的若干线段. 这里有两种情况: 1.某个线段中的最大值小于等于修改的数,那么这个线段的贡献 ...

  5. [BZOJ29957] 楼房重建 - 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3294  Solved: 1554[Submit][Status][Discus ...

  6. bzoj2957 楼房重建——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护两个值:cnt 能看到的最多楼房数: mx 最大斜率数: 对于一段区间,从左 ...

  7. bzoj2957楼房重建——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护原点到楼顶的斜率,可以知道答案就是从原点开始斜率递增的个数: 记录一个mx数 ...

  8. luogu P4198 楼房重建——线段树

    题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线 ...

  9. [Luogu P4198]楼房重建(线段树)

    题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个 ...

  10. 洛谷P4198 楼房重建(线段树)

    题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_ ...

随机推荐

  1. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  2. cookie、localstroage与sessionstroage的一些优缺点

    1.    Cookie 在前端开发中,尽量少用cooie,原因: (1)   cookie限制大小,约4k左右,不适合存储业务数据,尤其是数据量较大的值: (2)   cookie会每次随http请 ...

  3. OGG生成数据定义文件的参数NOEXTATTR

    ./defgen paramfile ./dirprm/jzjj.prm NOEXTATTR In OGG 11.2, there is a new parameter NOEXTATTR. This ...

  4. phinx:php数据库迁移

    Phinx使你的php app进行数据迁移的过程变得异常轻松,在五分钟之内你就可以安装好Phinx 并进行数据迁移. 特性 使用php代码进行数据迁移 部署模式下迁移 五分钟之内使用 不再担心数据库的 ...

  5. UBIFS学习笔记

    在做项目的时候,发现flash芯片有异常现象,经过打印分析,发现是UBIFS方面设置有一些问题,经过查阅一部分资料,最终得到问题的答案. 在解决问题的过程中,发现打印信息比较重要,但网上并没有直接的相 ...

  6. ubuntu 命令配置ip 网关 dns

    如果是在虚拟机中使用Ubuntu,先设置好主机的网络,然后配置虚拟机Ubuntu的IP和网关 如果主机操作系统就是Ubuntu,请直接参照下文进行设置 内容如下: 1. 检验是否可以连通,就使用pin ...

  7. 初探Nginx架构

    参考链接:http://tengine.taobao.org/book/chapter_02.html nginx在启动后,在unix系统中会以daemon的方式在后台运行,后台进程包含一个maste ...

  8. spring集成swagger

    随着互联网技术的发展,现在的网站架构基本都由原来的后端渲染,变成了:前端渲染.前后端分离的形态,而且前端技术和后端技术在各自的道路上越走越远. 前端和后端的唯一联系,变成了API接口:API文档变成了 ...

  9. webuploader插件使用分析

    大致架构: 前端:html5+ajax 后端:java (struts框架相关) 碰到问题: 后台coder给我提供一个接口./file/uploader.do?upFile=?,让我上传文件对应up ...

  10. 用socket发送匿名邮件之python实现

    发送邮件可以用smtp协议,整个过程为: 用户代理(user-agent,比如outlook.foxmail等邮件客户端)---(smtp协议)--->本地邮件服务器 --- (smtp协议)- ...