# -*- coding: utf-8 -*-
# @Date:   2017-08-26
# @Original:

from collections import namedtuple
from collections import OrderedDict
from functools import reduce

class StockTradeDays(object):
    def __init__(self, price_array, start_date, date_array=None):
        # 私有价格序列
        self.__price_array = price_array
        # 私有日期序列
        self.__date_array = self._init_days(start_date, date_array)
        # 私有涨跌幅序列
        self.__change_array = self.__init_change()
        # 进行OrderedDict的组装
        self.stock_dict = self._init_stock_dict()

    def __init_change(self):
        """
        从price_array生成change_array
        :return:
        """
        price_float_array = [float(price_str) for price_str in
                             self.__price_array]
        # 通过将时间平移形成两个错开的收盘价序列,通过zip打包成为一个新的序列
        # 每个元素为相邻的两个收盘价格
        pp_array = [(price1, price2) for price1, price2 in
                    zip(price_float_array[:-1], price_float_array[1:])]
        change_array = list(map(lambda pp: reduce(lambda a, b: round((b - a) / a, 3), pp), pp_array))
        # list insert插入数据,将第一天的涨跌幅设置为0
        change_array.insert(0, 0)
        return change_array

    def _init_days(self, start_date, date_array):
        """
        protect方法,
        :param start_date: 初始日期
        :param date_array: 给定日期序列
        :return:
        """
        if date_array is None:
            # 由start_date和self.__price_array来确定日期序列
            date_array = [str(start_date + ind) for ind, _ in
                          enumerate(self.__price_array)]
        else:
            # 稍后的内容会使用外部直接设置的方式
            # 如果外面设置了date_array,就直接转换str类型组成新date_array
            date_array = [str(date) for date in date_array]
        return date_array

    def _init_stock_dict(self):
        """
        使用namedtuple,OrderedDict将结果合并
        :return:
        """
        stock_namedtuple = namedtuple('stock',
                                      ('date', 'price', 'change'))

        # 使用以被赋值的__date_array等进行OrderedDict的组装
        stock_dict = OrderedDict(
            (date, stock_namedtuple(date, price, change))
            for date, price, change in
            zip(self.__date_array, self.__price_array,
                self.__change_array))
        return stock_dict

    def filter_stock(self, want_up=True, want_calc_sum=False):
        """
        筛选结果子集
        :param want_up: 是否筛选上涨
        :param want_calc_sum: 是否计算涨跌和
        :return:
        """
        # Python中的三目表达式的写法
        filter_func = (lambda p_day: p_day.change > 0) if want_up else (
            lambda p_day: p_day.change < 0)
        # 使用filter_func做筛选函数
        want_days = list(filter(filter_func, self.stock_dict.values()))

        if not want_calc_sum:
            return want_days

        # 需要计算涨跌幅和
        change_sum = 0.0
        for day in want_days:
            change_sum += day.change
        return change_sum

    """
        下面的__str__,__iter__, __getitem__, __len__稍后会详细讲解作
    """

    def __str__(self):
        return str(self.stock_dict)

    __repr__ = __str__

    def __iter__(self):
        """
        通过代理stock_dict的跌倒,yield元素
        :return:
        """
        for key in self.stock_dict:
            yield self.stock_dict[key]

    def __getitem__(self, ind):
        date_key = self.__date_array[ind]
        return self.stock_dict[date_key]

    def __len__(self):
        return len(self.stock_dict)

price_array = '413.05,416.51,420.47,410.01,411.87,415.91,415.5,417.28,418.75,407.86,408.68,411.25,411.88,417.7,418.12,415.3,416,416.71,427.36,424.06,416,413.12,416.02,417.9,420.3,420.6,420.46,423.75,422.57,422.28,418.5,418.47,421.32,423.74,426.59,424.75,426.01,431.48,432.04,428.51,430.03,437.76,443.85,452.26,447.8,453.69,463.02,461.77,468.14,444.85,450.46,455.32,446.6,451.11,443.73,450.39,447.38,448.4,461.18,460.2,459.87,461.56,450.7,452.28,455.01,455.76,455.8,457.89,453.01,453.24,453.52,434.55,441.57,440.81,437.48,443.51,445.03,449.09,453.95,472.01,526.02,531,532.89,530.69,536.79,538.8,570.87,572.87,574.02,585.34,576.88,583.05,575.52,580.09,614.51,672,705.87,684.5,696.99,769.5,747.95,757.6,767.3,743.9,668.6,605.85,625.8,665.5,664.87,627.42,662.33,646.61,640,674.74,674.75,705.99,659.29,681.34,667.8,677.04,640.51,664.8,648.11,649.72,647.95,667.19,653.7,659.78,665.5,665.33,683.2,674.3,675,665.85,665.01,648.04,654.03,661.82,654.17,648.47,655.51,655.93,658.34,654.99,622.83,608.29,604.1,590.28,591.27,585.5,583.73,569.41,564.64,574.17,571.83,572.21,573.51,582.1,581.42,588.01,583.54,580.32,577.2,578.02,568.55,574.17,574.78,579.49,576.15,572.73,579.85,609.89,614.52,611.5,615.23,619.75,631.73,626.25,628,612.08,611.62,614.23,613.88,611.81,610.01,607.69,613.03,609.79,600.14,597.43,597.08,603.29,602.55,600.36,609.14,605.53,603.76,604.6,611.1,614.09,609.09,612.67,610.98,614.09,613.51,620.13,620.5,616.56,618.87,641.87,637.63,637.01,643,640.2,644.18,639.79,638.68,631.77,632.46,636.73,664.99,659.03,654.65,659.52,678.7,688.67,693.47,714.51,702.55,701.02,734.6,750.85,692.51,707.62,708.89,713.95,705.55,711.99,724.54,714.87,716.22,703.57,703.64,707.43,712.17,744.98,740.67,753.97,752.9,729.67,738.99,749.85,742,737.61,740.36,731.19,724.9,731.52,731.05,739,755.36,774.88,765.46,768.5,750.62,757.36,765.01,765.01,770.5,772.9,770.21,777.99,775,774.49,777.43,784.17,790.99,790.21,790.59,797.99,829.34,859.2,918.99,895.24,898,906.4,936.43,981.7,974.74,959.26,966.58,998.99,1019.3,1037.5,1139.6,1003.2,898.5,908,915.9,903,905.76,779.54,804.58,828.12,815.3,820.74,830.1,903.99,887.46,900.29,895.74,924.02,923.72,908.52,886.1,893.35,915.12,916.7,919.43,912.55,917.35,966.19,983.73,1007,1015.7,1031.1,1006.6,1022.6,1052.1,1048.8,984.97,992,1000.1,996.01,996.5,1013.3,1013.9,1038.5,1056.2,1059.7,1056.2,1091.2,1129.6,1125.5,1189.8,1185.4,1153,1178.3,1195.5,1189.1,1233.2,1258,1289.2,1267.8,1278.4,1279.2,1232.4,1150,1190.4,1115.4,1172.4,1224.4,1238.5,1245,1256.2,1168.6,1070.4,971.51,1016.5,1040.5,1115.9,1039.1,1032.7,942.13,972.17,968.9,1042.7,1044.7,1041.8,1041.2,1081.5,1093.5,1107.5,1150.1,1145.8,1140.4,1191.5,1196.6,1188.1,1215.9,1220.3,1235.6,1227.4,1186.9,1206.8,1193.3,1212,1240,1265.4,1260.5,1308.5,1327,1346.4,1355.2,1345,1371.1,1400,1440.3,1415.6,1423.6,1435,1533,1558.5,1619,1607.1,1545.1,1597,1619.9,1703.5,1760,1796.9,1853.9,1735,1819.5,1827.3,1772,1786.2,1870,1941.5,1966.5,2059.3,2026.6,2087.3,2249.6,2395.5,2268.1,2125.9,1980.2,2056.9,2207.4,2146.7,2191.8,2312,2405.9,2461,2488.2,2636.9,2844.6,2644,2781.5,2809,2806,2941.8,2569.6,2677.1,2394.3,2377.5,2437.5,2610.1,2491.4,2582,2714.5,2624.4,2672.8,2674.9,2502.6,2483.3,2393.6,2521.2,2518.2,2472.4,2420.6,2346.2,2445.1,2524,2579.9,2598.6,2593.2,2479.3,2542,2477.9,2318.3,2283.8,2375.6,2330.1,2206.5,1978.6,1925,2220,2302.8,2253.4,2865.1,2659,2844.7,2750.1,2769.7,2560.9,2527.7381,2664.6,2784.8,2713.1,2748.2,2854.3,2731.3,2702,2790.3,2860,3252.3,3232.1,3396,3415,3340.4,3405,3643.4,3866.2,4061.6,4320.8,4151.8,4386.4,4263,4090.1,4145,4063.1,3998.2,4081.9,4130.2,4322.1,4351.5,4340.4,4332.8,4385.1,4587.1,4568,4718.3,4907.7,4532.3,4598.5,4205,4375,4595.8,4613.7,4304,4315.9,4233.9,4198.7,4149.4,3849.7,3235.3,3697.1,3681.5,3666.6,4084.4,3892.2,3872.4,3596.7,3602.3,3779.6,3654.7,3930.1,3881.5,4209.7,4190,4168,4367.1,4404.3,4400.2,4310.6,4215.9,4312,4370,4435.6,4611.9,4782.3,4777.7,4824.9,5440,5636.8,5833.5,5713.9,5764.8,5597.1,5567,5694.2,5983.8,6005.1,5981.3,5907.3,5510,5724.1,5890,5759.7,5720.3,6150,6130,6455.1'.split(',')

date_base = 20170118
# 从StockTradeDays类初始化一个实例对象trade_days,内部会调用__init__
trade_days = StockTradeDays(price_array, date_base)
# # 打印对象信息
# print(trade_days)

# print('trade_days对象长度为: {}'.format(len(trade_days)))

# from collections import Iterable
# # 如果是trade_days是可迭代对象,依次打印出
# if isinstance(trade_days, Iterable) :
    # for day in trade_days:
        # print(day)

# print(trade_days.filter_stock())

import six
from abc import ABCMeta, abstractmethod

"""
    交易策略抽象基类
"""
class TradeStrategyBase(six.with_metaclass(ABCMeta, object)):

    @abstractmethod
    def buy_strategy(self, *args, **kwargs):
        # 买入策略基类
        pass

    @abstractmethod
    def sell_strategy(self, *args, **kwargs):
        # 卖出策略基类
        pass

"""
    交易策略1: 追涨策略,当股价上涨一个阀值默认为7%时
    买入股票并持有s_keep_stock_threshold(20)天
"""
class TradeStrategy1(TradeStrategyBase):

    s_keep_stock_threshold = 20

    def __init__(self):
        self.keep_stock_day = 0
        # 7%上涨幅度作为买入策略阀值
        self.__buy_change_threshold = 0.07

    def buy_strategy(self, trade_ind, trade_day, trade_days):
        if self.keep_stock_day == 0 and trade_day.change > self.__buy_change_threshold:
            # 当没有持有股票的时候self.keep_stock_day == 0 并且
            # 符合买入条件上涨一个阀值,买入
            self.keep_stock_day += 1
        elif self.keep_stock_day > 0:
            # self.keep_stock_day > 0代表持有股票,持有股票天数递增
            self.keep_stock_day += 1

    def sell_strategy(self, trade_ind, trade_day, trade_days):
        if self.keep_stock_day >= TradeStrategy1.s_keep_stock_threshold:
            # 当持有股票天数超过阀值s_keep_stock_threshold,卖出股票
            self.keep_stock_day = 0

    """
        property属性稍后会讲到
    """
    @property
    def buy_change_threshold(self):
        return self.__buy_change_threshold

    @buy_change_threshold.setter
    def buy_change_threshold(self, buy_change_threshold):
        if not isinstance(buy_change_threshold, float):
            """
                上涨阀值需要为float类型
            """
            raise TypeError('buy_change_threshold must be float!')
        # 上涨阀值只取小数点后两位
        self.__buy_change_threshold = round(buy_change_threshold, 2)

"""
    交易回测系统
"""
class TradeLoopBack(object):

    def __init__(self, trade_days, trade_strategy):
        """
        使用上一节封装的StockTradeDays类和本节编写的交易策略类
        TradeStrategyBase类初始化交易系统
        :param trade_days: StockTradeDays交易数据序列
        :param trade_strategy: TradeStrategyBase交易策略
        """
        self.trade_days = trade_days
        self.trade_strategy = trade_strategy
        # 交易盈亏结果序列
        self.profit_array = []

    def execute_trade(self):
        """
        执行交易回测
        :return:
        """
        for ind, day in enumerate(self.trade_days):
            """
                以时间驱动,完成交易回测
            """
            if self.trade_strategy.keep_stock_day > 0:
                # 如果有持有股票,加入交易盈亏结果序列
                self.profit_array.append(day.change)

            # hasattr: 用来查询对象有没有实现某个方法
            if hasattr(self.trade_strategy, 'buy_strategy'):
                # 买入策略执行
                self.trade_strategy.buy_strategy(ind, day, self.trade_days)

            if hasattr(self.trade_strategy, 'sell_strategy'):
                # 卖出策略执行
                self.trade_strategy.sell_strategy(ind, day, self.trade_days)

"""
    交易策略2: 均值回复策略,当股价连续两个交易日下跌,
    且下跌幅度超过阀值默认s_buy_change_threshold(-10%),
    买入股票并持有s_keep_stock_threshold(10)天
"""
class TradeStrategy2(TradeStrategyBase):

    # 买入后持有天数
    s_keep_stock_threshold = 10
    # 下跌买入阀值
    s_buy_change_threshold = -0.10

    def __init__(self):
        self.keep_stock_day = 0

    def buy_strategy(self, trade_ind, trade_day, trade_days):
        if self.keep_stock_day == 0 and trade_ind >= 1:
            """
                当没有持有股票的时候self.keep_stock_day == 0 并且
                trade_ind >= 1, 不是交易开始的第一天,因为需要yesterday数据
            """
            # trade_day.change < 0 bool:今天是否股价下跌
            today_down = trade_day.change < 0
            # 昨天是否股价下跌
            yesterday_down = trade_days[trade_ind - 1].change < 0
            # 两天总跌幅
            down_rate = trade_day.change + trade_days[trade_ind - 1].change
            if today_down and yesterday_down and down_rate < TradeStrategy2.s_buy_change_threshold:
                # 买入条件成立:连跌两天,跌幅超过s_buy_change_threshold
                self.keep_stock_day += 1
        elif self.keep_stock_day > 0:
            # self.keep_stock_day > 0代表持有股票,持有股票天数递增
            self.keep_stock_day += 1

    def sell_strategy(self, trade_ind, trade_day, trade_days):
        if self.keep_stock_day >= TradeStrategy2.s_keep_stock_threshold:
            # 当持有股票天数超过阀值s_keep_stock_threshold,卖出股票
            self.keep_stock_day = 0

    #类方法,第一个参数为表示自身类的cls参数
    @classmethod
    def set_keep_stock_threshold(cls, keep_stock_threshold):
        cls.s_keep_stock_threshold = keep_stock_threshold

    #静态方法
    @staticmethod
    def set_buy_change_threshold(buy_change_threshold):
        TradeStrategy2.s_buy_change_threshold = buy_change_threshold

#1. 继续和多态
trade_loop_back = TradeLoopBack(trade_days, TradeStrategy1())
trade_loop_back.execute_trade()
print('回测策略1 总盈亏为:{}%'.format(reduce(lambda a, b: a + b, trade_loop_back.profit_array) * 100))

#2. 使用@property给私有变量赋值
trade_strategy1 = TradeStrategy1()
# 买入阀值从0.07上升到0.1
trade_strategy1.buy_change_threshold = 0.1
trade_loop_back = TradeLoopBack(trade_days, trade_strategy1)
trade_loop_back.execute_trade()
print('回测策略1 总盈亏为:{}%'.format(reduce(lambda a, b: a + b, trade_loop_back.profit_array) * 100))

trade_strategy2 = TradeStrategy2()
trade_loop_back = TradeLoopBack(trade_days, trade_strategy2)
trade_loop_back.execute_trade()
print('回测策略2 总盈亏为:{}%'.format(reduce(lambda a, b: a + b, trade_loop_back.profit_array) * 100))

# 实例化一个新的TradeStrategy2类对象
trade_strategy2 = TradeStrategy2()
# 修改为买入后持有股票20天,默认为10天
TradeStrategy2.set_keep_stock_threshold(20)
# 修改股价下跌买入阀值为-0.08(下跌8%),默认为-0.10(下跌10%)
TradeStrategy2.set_buy_change_threshold(-0.08)
# 实例化新的回测对象trade_loop_back
trade_loop_back = TradeLoopBack(trade_days, trade_strategy2)
# 执行回测
trade_loop_back.execute_trade()
print('回测策略2 总盈亏为:{}%'.format(reduce(lambda a, b: a + b, trade_loop_back.profit_array) * 100))

Python面象对象与类的更多相关文章

  1. python之对象与类

    1.类的定义 类是一个用户定义类型,类似与c语言中的结构体 class <ClassName>: "类的帮助信息"#类文档字符串 class_suite #类体 其中C ...

  2. Python - 面对对象(进阶)

    目录 Python - 面对对象(进阶) 类的成员 一. 字段 二. 方法 三. 属性 类的修饰符 类的特殊成员 Python - 面对对象(进阶) 类的成员 一. 字段 字段包括:普通字段和静态字段 ...

  3. Python全栈--9.1--面向对象进阶-super 类对象成员--类属性- 私有属性 查找源码类对象步骤 类特殊成员 isinstance issubclass 异常处理

    上一篇文章介绍了面向对象基本知识: 面向对象是一种编程方式,此编程方式的实现是基于对 类 和 对象 的使用 类 是一个模板,模板中包装了多个“函数”供使用(可以讲多函数中公用的变量封装到对象中) 对象 ...

  4. 对于python,一切事物都是对象,对象基于类创建

    新建列表.新建string字符串 li1 = [1, 2, 3, 4] li2 = list([1, 2, 3]) s1 = "abc" s2 = str("abc&qu ...

  5. python面对对象编程----------7:callable(类调用)与context(上下文)

    一:callables callables使类实例能够像函数一样被调用 如果类需要一个函数型接口这时用callable,最好继承自abc.Callable,这样有些检查机制并且一看就知道此类的目的是c ...

  6. python面对对象编程------4:类基本的特殊方法__str__,__repr__,__hash__,__new__,__bool__,6大比较方法

    一:string相关:__str__(),__repr__(),__format__() str方法更面向人类阅读,print()使用的就是str repr方法更面对python,目标是希望生成一个放 ...

  7. python中对象、类型和元类之间的关系

    在python中对象.类型和元类构成了一个微妙的世界. 他们有在这个世界里和平共处,相辅相成.它们遵循着几条亘古不变的定律: 1.python中无处不对象 2.所有对象都有三种特性:id.类型.值 3 ...

  8. 从0开始的Python学习012数据结构&对象与类

    简介 数据结构是处理数据的结构,或者说,他们是用来存储一组相关数据的. 在Python中三种内建的数据结构--列表.元组和字典.学会了使用它们会使编程变得的简单. 列表 list是处理一组有序的数据结 ...

  9. python的类和对象(类的静态字段)

    转自:http://www.cnblogs.com/Eva-J/p/5044411.html 什么是静态字段 在开始之前,先上图,解释一下什么是类的静态字段(我有的时候会叫它类的静态变量,总之说的都是 ...

随机推荐

  1. AngularJS 和 Electron 构建桌面应用

    译]使用 AngularJS 和 Electron 构建桌面应用 原文: Creating Desktop Applications With AngularJS and GitHub Electro ...

  2. noj1475(递推题)统计多少个1

    http://acm.nbut.cn/Problem/view.xhtml?id=1475 题意:给出一个数,需要你统计在这个数范围内有多少个1........ 思路:从高位到低位计算,例如1312 ...

  3. Linux动态库开发

    http://blog.csdn.net/qq_33850438/article/details/52014399 ### 导出符号------------------------------ 默认所 ...

  4. Unix系统编程()进程和程序

    进程(process)是一个可执行程序(program)的实例. 程序是包含了一系列信息的文件,这些信息描述了如何在运行时创建一个进程,所包括的内容如下所示. 二进制格式标识:每个程序文件都包含用于描 ...

  5. JDK1.8与spring3.x的不兼容

    今天运气很好,两次遇到了这个兼容性问题,spring3.x不支持 java 1.8 byte code format!! 九月 10, 2017 7:17:18 上午 org.apache.catal ...

  6. sql one

    查询的话 子查询什么的都很正常 添加的话 尽量把东西都添加在一个表单里 这是源头 有个这个方便的源头 查询和删除都会方便很多 组建一个网站,不可避免的要进行调试,有些功能需要添加或者删除,对于后台来讲 ...

  7. TensorFlow基础笔记(5) VGGnet_test

    参考 http://blog.csdn.net/jsond/article/details/72667829 资源: 1.相关的vgg模型下载网址 http://www.vlfeat.org/matc ...

  8. ubuntu vnc安装

    VNC(Virtual Network Computing),为一种使用RFB协议的屏幕画面分享及远程操作软件.此软件借由网络,可发送键盘与鼠标的动作及即时的屏幕画面. 1. 安装vnc服务器 sud ...

  9. Try中如果发现错误,即跳出try去匹配catch,那么try后面的语句就不会被执行

    例:public void print() throws Exception. 对于方法a,如果它定义了throws Exception.那么当它调用的方法b返回异常对象时,方法a并不处理,而将这个异 ...

  10. PPT如何一页多张打印且铺满整个页面

    最近由于工作需要,有些ppt材料想打印出来学习,但是ppt页数较多,ppt单页打印有些浪费纸张,而且也不能拿到外面打印店去打印,所以只能自己动手设置一页多张打印,并且最后双面打印,这样就做够节省纸张了 ...