题面

传送门

题解

统计\(k\)阶前缀和,方法和这题一样

然后这里\(n\)比较大,那么把之前的柿子改写成

\[s_{j,k}=\sum_{i=1}^ja_i{j-i+k-1\choose j-i}=\sum_{i=1}^na_i{(j-i+k-1)^{\underline{j-i}}\over (j-i)!}
\]

就可以化成卷积形式了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
ll readll(){
R ll res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=(1<<18)+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int r[N],rt[2][N],inv[N],a[N],c[N];
int lim,d,ilim,n,k;
void Pre(){
lim=1,d=0;while(lim<(n<<1))lim<<=1,++d;ilim=ksm(lim,P-2);
inv[0]=inv[1]=1;fp(i,2,n)inv[i]=mul(P-P/i,inv[P%i]);
c[0]=1;fp(i,1,n-1)c[i]=1ll*c[i-1]*(i+k-1)%P*inv[i]%P;
fp(i,1,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(d-1));
for(R int t=(P-1)>>1,i=1,x,y;i<lim;i<<=1,t>>=1){
x=ksm(3,t),y=ksm(332748118,t),rt[0][i]=rt[1][i]=1;
fp(k,1,i-1)
rt[1][i+k]=mul(rt[1][i+k-1],x),
rt[0][i+k]=mul(rt[0][i+k-1],y);
}
}
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0,t;j<lim;j+=(mid<<1))
fp(k,0,mid-1)
A[j+k+mid]=dec(A[j+k],t=mul(rt[ty][mid+k],A[j+k+mid])),
A[j+k]=add(A[j+k],t);
if(!ty)fp(i,0,lim-1)A[i]=mul(A[i],ilim);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),k=readll()%P;
fp(i,0,n-1)a[i]=read();
Pre();
NTT(a,1),NTT(c,1);
fp(i,0,lim-1)a[i]=mul(a[i],c[i]);
NTT(a,0);
fp(i,0,n-1)print(a[i]);
return Ot(),0;
}

loj#6261. 一个人的高三楼(NTT+组合数学)的更多相关文章

  1. LOJ #6261 一个人的高三楼

    生成函数和组合数学的灵活应用 LOJ #6261 题意:求一个数列的$ k$次前缀和 $ Solution:$ 我们对原数列$ a$建生成函数$ A=\sum\limits_{i=0}^{n-1} a ...

  2. loj #6261 一个人的高三楼 FFT + 组合数递推

    \(\color{#0066ff}{ 题目描述 }\) 一天的学习快要结束了,高三楼在晚自习的时候恢复了宁静. 不过,\(HSD\) 桑还有一些作业没有完成,他需要在这个晚自习写完.比如这道数学题: ...

  3. 【NTT】loj#6261. 一个人的高三楼

    去年看过t老师写这题博客:以为是道神仙题 题目大意 求一个数列的$k$次前缀和.$n\le 10^5$. 题目分析 [计数]cf223C. Partial Sums 加强版.注意到最后的式子是$f_i ...

  4. BZOJ3028 食物 和 LOJ6261 一个人的高三楼

    总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...

  5. XJOI 夏令营501-511NOIP训练18 高三楼

    参观完各种饭堂,学校还有什么著名的景点呢?当然是教室了,此时此刻我 们来到了高三楼.你会发现高三楼门口会有以身份认证系统,这东西还有着一段疼人的历史.每年的九月到来,高三的童鞋大多不习惯学校的作息时间 ...

  6. 「loj#6261」一个人的高三楼

    题目 显然存在一个这样的柿子 \[S^{(k)}_i=\sum_{j=1}^iS^{(k-1)}_j\] 我们可以视为\(S^{(k)}\)就是由\(S^{(k-1)}\)卷上一个长度为\(n\)全是 ...

  7. loj#2020 「AHOI / HNOI2017」礼物 ntt

    loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...

  8. [LOJ6261]一个人的高三楼

    loj description 给你一个长度为\(n\)的数列\(a_i\),求它的\(k\)次前缀和模\(998244353\).(就是做\(k\)次前缀和后的数列) \(n\le10^5,k\le ...

  9. 夏令营501-511NOIP训练18——高三楼

    传送门:QAQQAQ 题意:定义矩阵A与矩阵B重复,当且仅当A可以通过任意次行列交换得到B,例如下图A,B即为合法矩阵 现求对于$n*n$的矩阵有多少个不重复的矩阵 数据范围: 对于10%的数据 N≤ ...

随机推荐

  1. Linux运维入门(二):网络基础知识梳理02

    一,交换机的基本原理 1.1 数据链路层的功能 (1)数据链路层负责网络中相邻节点之间可靠的数据通信,并进行有效的流量控制. (2)数据链路层的作用包括数据链路的建立,维护与拆除,帧包装,帧传输,帧同 ...

  2. Linux实战教学笔记27:Nginx详细讲解

    前言:nginx的特点 本节主要对Nginx Web服务软件进行介绍,涉及Nginx的基础,特性,配置部署,优化,以及企业中的日常运维管理和应用.作为HTTP服务软件的后起之秀,Nginx与它的老大哥 ...

  3. 启动react项目报如下错误

    输入:npm run build:dll

  4. java基础强化——深入理解反射

    目录 1.从Spring容器的核心谈起 2. 反射技术初探 2.1 什么是反射技术 2.2 类结构信息和java对象的映射 3 Class对象的获取及需要注意的地方 4. 运行时反射获取类的结构信息 ...

  5. 【BZOJ3238】差异【后缀自动机+dp】

    题意 分析 这个题目还是很优秀的.sigma(len(Ti)+len(Tj))的值是一定的=n*(n+1)*(n-1)/2.那么关键就是求任意两个后缀的lcp的和了. 我们怎么求两个后缀的lcp?如果 ...

  6. 【LA3415 训练指南】保守的老师 【二分图最大独立集,最小割】

    题意 Frank是一个思想有些保守的高中老师.有一次,他需要带一些学生出去旅行,但又怕其中一些学生在旅行中萌生爱意.为了降低这种事情发生的概率,他决定确保带出去的任意两个学生至少要满足下面四条中的一条 ...

  7. SpringBoot31 整合SpringJDBC、整合MyBatis、利用AOP实现多数据源

    一.整合SpringJDBC 1  JDBC JDBC(Java Data Base Connectivity,Java 数据库连接)是一种用于执行 SQL 语句的 Java API,可以为多种关系数 ...

  8. 使用dataview组件显示服务器端xml文件数据

    来自<sencha touch权威指南>,约193页开始 ------------------------------------- (1)app.js代码: Ext.require([' ...

  9. [BAT] 通过批处理删除7天前的报告,并删除当前目录下的空文件夹

    set reportPath=D:\AutomationReport cd /d %reportPath% forfiles /p %reportPath% /s /m *.xml /d -7 /c ...

  10. Redis安装及HA(High Availability)配置(转)

    出处:http://www.cnblogs.com/morvenhuang/p/4184262.html Redis是一种内存数据库,以KEY-VALUE(即键值对)的形式存储数据.这篇文章主要介绍的 ...