loj#6261. 一个人的高三楼(NTT+组合数学)
题面
题解
统计\(k\)阶前缀和,方法和这题一样
然后这里\(n\)比较大,那么把之前的柿子改写成
\]
就可以化成卷积形式了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
ll readll(){
R ll res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=(1<<18)+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int r[N],rt[2][N],inv[N],a[N],c[N];
int lim,d,ilim,n,k;
void Pre(){
lim=1,d=0;while(lim<(n<<1))lim<<=1,++d;ilim=ksm(lim,P-2);
inv[0]=inv[1]=1;fp(i,2,n)inv[i]=mul(P-P/i,inv[P%i]);
c[0]=1;fp(i,1,n-1)c[i]=1ll*c[i-1]*(i+k-1)%P*inv[i]%P;
fp(i,1,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(d-1));
for(R int t=(P-1)>>1,i=1,x,y;i<lim;i<<=1,t>>=1){
x=ksm(3,t),y=ksm(332748118,t),rt[0][i]=rt[1][i]=1;
fp(k,1,i-1)
rt[1][i+k]=mul(rt[1][i+k-1],x),
rt[0][i+k]=mul(rt[0][i+k-1],y);
}
}
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0,t;j<lim;j+=(mid<<1))
fp(k,0,mid-1)
A[j+k+mid]=dec(A[j+k],t=mul(rt[ty][mid+k],A[j+k+mid])),
A[j+k]=add(A[j+k],t);
if(!ty)fp(i,0,lim-1)A[i]=mul(A[i],ilim);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),k=readll()%P;
fp(i,0,n-1)a[i]=read();
Pre();
NTT(a,1),NTT(c,1);
fp(i,0,lim-1)a[i]=mul(a[i],c[i]);
NTT(a,0);
fp(i,0,n-1)print(a[i]);
return Ot(),0;
}
loj#6261. 一个人的高三楼(NTT+组合数学)的更多相关文章
- LOJ #6261 一个人的高三楼
生成函数和组合数学的灵活应用 LOJ #6261 题意:求一个数列的$ k$次前缀和 $ Solution:$ 我们对原数列$ a$建生成函数$ A=\sum\limits_{i=0}^{n-1} a ...
- loj #6261 一个人的高三楼 FFT + 组合数递推
\(\color{#0066ff}{ 题目描述 }\) 一天的学习快要结束了,高三楼在晚自习的时候恢复了宁静. 不过,\(HSD\) 桑还有一些作业没有完成,他需要在这个晚自习写完.比如这道数学题: ...
- 【NTT】loj#6261. 一个人的高三楼
去年看过t老师写这题博客:以为是道神仙题 题目大意 求一个数列的$k$次前缀和.$n\le 10^5$. 题目分析 [计数]cf223C. Partial Sums 加强版.注意到最后的式子是$f_i ...
- BZOJ3028 食物 和 LOJ6261 一个人的高三楼
总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...
- XJOI 夏令营501-511NOIP训练18 高三楼
参观完各种饭堂,学校还有什么著名的景点呢?当然是教室了,此时此刻我 们来到了高三楼.你会发现高三楼门口会有以身份认证系统,这东西还有着一段疼人的历史.每年的九月到来,高三的童鞋大多不习惯学校的作息时间 ...
- 「loj#6261」一个人的高三楼
题目 显然存在一个这样的柿子 \[S^{(k)}_i=\sum_{j=1}^iS^{(k-1)}_j\] 我们可以视为\(S^{(k)}\)就是由\(S^{(k-1)}\)卷上一个长度为\(n\)全是 ...
- loj#2020 「AHOI / HNOI2017」礼物 ntt
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...
- [LOJ6261]一个人的高三楼
loj description 给你一个长度为\(n\)的数列\(a_i\),求它的\(k\)次前缀和模\(998244353\).(就是做\(k\)次前缀和后的数列) \(n\le10^5,k\le ...
- 夏令营501-511NOIP训练18——高三楼
传送门:QAQQAQ 题意:定义矩阵A与矩阵B重复,当且仅当A可以通过任意次行列交换得到B,例如下图A,B即为合法矩阵 现求对于$n*n$的矩阵有多少个不重复的矩阵 数据范围: 对于10%的数据 N≤ ...
随机推荐
- Centos7安装jekyll
1.首先需要安装相应的依赖包及所需要的工具 sudo yum install nodejs npm ruby ruby-devel rubygems git 2.修改gem源 国内 使用的淘宝的更新源 ...
- AlphaTesting
[Alpha Testing] The alpha test is a last chance to reject a pixel from being written to the screen. ...
- boxing & unboxing
[boxing & unboxing] Boxing is the process of converting a value type to the type object or to an ...
- Unable to resolve module `../res/images/ic_popular.png`
- 398. Random Pick Index随机pick函数
[抄题]: Given an array of integers with possible duplicates, randomly output the index of a given targ ...
- mysql数据库优化总结 有图 有用
对于一个以数据为中心的应用,数据库的好坏直接影响到程序的性能,因此数据库性能至关重要.一般来说,要保证数据库的效率,要做好以下四个方面的工作:数据库设计.sql语句优化.数据库参数配置.恰当的硬件资源 ...
- qy Undefied index报错
目测是不支持如下写法 $value['status'] = $map[$value['status']];
- [Schema] I have updated my XML Schema for my service but SoapUI still generates/validates according to the old schema.
SoapUI caches XML schemas when they are first loaded. If you need to force a reload of an interfaces ...
- debian 9 更换源 使用国内源 配置方法
配置前请先参考: https://wiki.debian.org/SourcesList https://www.debian.org/mirror/list https://mirrors.tuna ...
- python 数据清洗
前言 1. 删除重复 2. 异常值监测 3. 替换 4. 数据映射 5. 数值变量类型化 6. 创建哑变量 统计师的Python日记[第7天:数据清洗(1)] 前言 根据我的Python学习计划: N ...