Jack Straws
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2911   Accepted: 1322

Description

In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

Source


 
  判断两线段相交 + 并查集
  一开始以为是简单的判断两线段相交问题,提交WA,后来发现还要用到并查集,因为这道题允许2条线段通过其他线段间接的相交,这就要求通过亲戚关系查找2条线段是否在同一集合。我一看正好是下学期数据结构的知识,就趁机熟悉了一遍。自己敲上了并查集的模板,判断两线段相交直接套用了模板,提交AC。
 
  并查集模板
 int UFS_NUM;    //并查集中元素总数
typedef struct node{
int data; //节点对应的编号
int rank; //节点对应秩
int parent; //节点对应的双亲下标
}UFSTree; //并查集树的节点类型
void MAKE_SET(UFSTree t[]) //初始化并查集树
{
int i;
for(i=;i<=UFS_NUM;i++){
t[i].data = i; //数据为该点编号
t[i].rank = ; //秩初始化为0
t[i].parent = i; //双亲初始化为指向自己
}
}
int FIND_SET(UFSTree t[],int x) //在x所在的子树中查找集合编号
{
if(t[x].parent == x) //双亲是自己
return x; //双亲是自己,返回 x
else //双亲不是自己
return FIND_SET(t,t[x].parent); //递归在双亲中查找x
}
void UNION(UFSTree t[],int x,int y) //将x和y所在的子树合并
{
x = FIND_SET(t,x); //查找 x 所在分离集合树的编号
y = FIND_SET(t,y); //查找 y 所在分离集合树的编号
if(t[x].rank > t[y].rank) //y 节点的秩小于 x节点的秩
t[y].parent = x; //将 y 连接到 x 节点上,x 作为 y 的双亲节点
else{ //y 节点的秩大于等于 x 节点的秩
t[x].parent = y; //将 x 连接到 y 节点上,y 作为 x 的双亲节点
if(t[x].rank==t[y].rank) //x 和 y的双亲节点秩相同
t[y].rank++; //y 节点的秩增 1
}
}
 
  题目代码:
 #include <iostream>
using namespace std;
/*--------- 并查集 模板 ------------*/
int UFS_NUM; //并查集中元素总数
typedef struct node{
int data; //节点对应的编号
int rank; //节点对应秩
int parent; //节点对应的双亲下标
}UFSTree; //并查集树的节点类型
void MAKE_SET(UFSTree t[]) //初始化并查集树
{
int i;
for(i=;i<=UFS_NUM;i++){
t[i].data = i;
t[i].rank = ;
t[i].parent = i;
}
}
int FIND_SET(UFSTree t[],int x) //在x所在的子树中查找集合编号
{
if(t[x].parent == x)
return x;
else
return FIND_SET(t,t[x].parent);
}
void UNION(UFSTree t[],int x,int y) //将x和y所在的子树合并
{
x = FIND_SET(t,x);
y = FIND_SET(t,y);
if(t[x].rank > t[y].rank)
t[y].parent = x;
else{
t[x].parent = y;
if(t[x].rank==t[y].rank)
t[y].rank++;
}
} /*--------- 判断两线段相交 模板 ------------*/
const double eps=1e-;
struct point { double x, y; };
double min(double a, double b) { return a < b ? a : b; }
double max(double a, double b) { return a > b ? a : b; }
bool inter(point a, point b, point c, point d){
if ( min(a.x, b.x) > max(c.x, d.x) ||
min(a.y, b.y) > max(c.y, d.y) ||
min(c.x, d.x) > max(a.x, b.x) ||
min(c.y, d.y) > max(a.y, b.y) ) return ;
double h, i, j, k;
h = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
i = (b.x - a.x) * (d.y - a.y) - (b.y - a.y) * (d.x - a.x);
j = (d.x - c.x) * (a.y - c.y) - (d.y - c.y) * (a.x - c.x);
k = (d.x - c.x) * (b.y - c.y) - (d.y - c.y) * (b.x - c.x);
return h * i <= eps && j * k <= eps;
} /*---------- 代码实现 -----------*/
struct line
{
point p1;
point p2;
};
int main()
{
int n;
UFSTree t[];
while(cin>>n){
if(n==) break;
UFS_NUM = n;//确定并查集树中元素总数
MAKE_SET(t); //初始化并查集
line l[];
for(int i=;i<=n;i++)
cin>>l[i].p1.x>>l[i].p1.y>>l[i].p2.x>>l[i].p2.y;
for(int i=;i<=n;i++) //根据关系生成关系树
for(int j=;j<=n;j++){
if(i==j) continue;
if(inter(l[i].p1,l[i].p2,l[j].p1,l[j].p2)){ //如果相交,有亲戚关系
UNION(t,i,j); //合并相关集合
}
}
int l1,l2;
while(cin>>l1>>l2){
if(l1== && l2==)
break;
l1 = FIND_SET(t,l1);
l2 = FIND_SET(t,l2);
if(l1 == l2)
cout<<"CONNECTED"<<endl;
else
cout<<"NOT CONNECTED"<<endl;
}
}
return ;
}

poj 1127:Jack Straws(判断两线段相交 + 并查集)的更多相关文章

  1. TOJ1840: Jack Straws 判断两线段相交+并查集

    1840: Jack Straws  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 1 ...

  2. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

  3. hdu 1147:Pick-up sticks(基本题,判断两线段相交)

    Pick-up sticks Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. POJ 1127 Jack Straws(计算几何)

    题目链接 抄的模版,居然1Y了.就是简单的线段相交+并查集. #include <iostream> #include <cstring> #include <cstdi ...

  5. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  6. hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  7. hdu 1558 线段相交+并查集

    题意:要求相交的线段都要塞进同一个集合里 sol:并查集+判断线段相交即可.n很小所以n^2就可以水过 #include <iostream> #include <cmath> ...

  8. [poj 1127]Jack Straws[线段相交][并查集]

    题意: 给出一系列线段,判断某两个线段是否连通. 思路: 根据线段相交情况建立并查集, 在同一并查集中则连通. (第一反应是强连通分量...实际上只要判断共存即可, 具体的方向啊是没有关系的..) 并 ...

  9. TTTTTTTTTTTTTT poj 1127 Jack Straws 线段相交+并查集

    题意: 有n个木棍,给出木棍的两个端点的x,y坐标,判断其中某两个线段是否连通(可通过其他线段连通) #include <iostream> #include <cstdio> ...

随机推荐

  1. 错误:因为相同类型的其他实体已具有相同的主键值。在使用 "Attach" 方法或者将实体的状态设置为 "Unchanged" 或 "Modified" 解决方法

    在更新一个实体类的时候可能会有预先有一次查询或者其它操作,我们这样用目的是为了与提交的数据做一个比较之类的东西,如果先查询再对此类进行SaveChanges就会出错. 我们只要用AsNoTrackin ...

  2. Win8多平台引用配置

    之前移植过DLNA的库,这个库是C++写的,然后我们的项目是C#的.接着很郁闷的事情发生了,主项目引用一个C#的DLL,然后这个DLL引用这个C++/CX封装的库.如果有C++的源代码的话,做项目依赖 ...

  3. Hadoop + HBase (自带zookeeper 也可单独加) 集群部署

    Hadoop+HBase搭建云存储总结 PDF http://www.linuxidc.com/Linux/2013-05/83844.htm HBase 结点之间时间不一致造成regionserve ...

  4. Appium完整安装教程

    Appium安装教程 发布时间: 2014-12-11 10:34    作者: 柒月    来源: 51Testing软件测试网采编 字体:  小  中  大  | 上一篇 下一篇 | 打印  | ...

  5. 发布WebService 1.1

    webservice1.1是基于jdk发布的 package cn.itcast.service01; import javax.jws.WebService; import javax.xml.ws ...

  6. kernel4.1 ioctl调用

    在4.1内核中开发时遇到个奇怪的问题: 用户空间的ioctl无法调用到内核空间的unlock_ioctl 排查源码发现 546 int do_vfs_ioctl(struct file *filp, ...

  7. C#指南,重温基础,展望远方!(7)C#结构

    结构是可以包含数据成员和函数成员的数据结构,这一点与类一样:与类不同的是,结构是值类型,无需进行堆分配. 结构类型的变量直接存储结构数据,而类类型的变量存储对动态分配的对象的引用. 结构类型不支持用户 ...

  8. python ichat使用学习记录

    1.OSError: [WinError -2147221003] 找不到应用程序: 'D:\\python\\ichat\\qrcode.jpg' 原因是该库中没有windows系统如何打开二维码图 ...

  9. 一个Keygen,参考参考

    看到一个Keygen,我觉得还可以,参考参考 //////////////////////////////////////////////////////////////////// //// key ...

  10. unity, GUI.Button texture is black

    GUI.Button(rect,tex),结果显示出来tex是黑的,原来是因为我以前在别处调用了GUI.contentColor =Color.black. 参考:http://answers.uni ...