/*
hdu-1052
Tian Ji -- The Horse Racing
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14456 Accepted Submission(s): 4125 Problem Description
Here is a famous story in Chinese history. "That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others." "Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from the loser." "Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian's. As a result, each time the king takes six hundred silver dollars from Tian." "Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match." "It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king's regular, and his super beat the king's plus. What a simple trick. And how do you think of Tian Ji, the high ranked official in China?" Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian's horses on one side, and the king's horses on the other. Whenever one of Tian's horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching... However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses --- a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too advanced tool to deal with the problem. In this problem, you are asked to write a program to solve this special case of matching problem. Input
The input consists of up to 50 test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s horses. Then the next n integers on the third line are the speeds of the king’s horses. The input ends with a line that has a single 0 after the last test case. Output
For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars. Sample Input
3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18
0 Sample Output
200
0
0 Source
2004 Asia Regional Shanghai Recommend
JGShining 题意:
田忌赛马 解题报告:
关键在于田忌最慢的马,能先赢就先赢,不能赢就去消耗齐王最快的马,
然后再来考虑最快的马,能先赢就先赢,不能赢说明现在田忌和齐王最快的
马和最慢的马都相等,再来考虑把田忌最慢的马和齐王最快的马比较。
可能更小,但也可能相等。(要按顺序哦,亲。)
1.当田忌最慢的马比齐王最慢的马快,赢一场先
2.当田忌最慢的马比齐王最慢的马慢,和齐王最快的马比,输一场
3.当田忌最快的马比齐王最快的马快时,赢一场先。
4.当田忌最快的马比齐王最快的马慢时,拿最慢的马和齐王最快的马比,输一场。
5.当田忌最快的马和齐王最快的马相等时,拿最慢的马来和齐王最快的马比. //以下是网上的证明 证明:田忌最快的马和齐王最快的马相等时拿最慢的马来和齐王最快的马比有最优解。 1)假设他们有n匹马,看n=2的时候. a1 a2
b1 b2 因为 田忌最快的马和齐王最快的马相等
所以a1=b1,a2=b2 所以这种情况有2种比赛方式,易得这两种方式得分相等。 2)当数列a和数列b全部相等等时(a1=b1,a2=b2...an=bn),
显然最慢的马来和齐王最快的马比有最优解,可以赢n-1长,输1场,找不到更好的方法了。
3)当数列a和数列b元素全部相等时(a1=b1=a2=b2...=an=bn),无法赢也不输。 现在假设n匹马时拿最慢的马来和齐王最快的马比有最优解,
证明有n+1匹马时拿最慢的马来和齐王最快的马比也有最优解。
数列
a1 a2 a3 a4...an an+1
b1 b2 b3 b4...bn bn+1 其中ai>=ai-1,bi>=bi-1 数列a和数列b不全部相等时,拿最慢的马来和齐王最快的马比数列得到数列
(a1) a2 a3 a4...an an+1
b1 b2 b3 b4...bn (bn+1) 分4种情况讨论
1.b1=b2,an=an+1
则有
a2 a3 a4...an
b2 b3 b4...bn
其中a2>=a1,a1=b1,b1=b2,得a2>=b2(此后这种大小关系不再论述),an>=bn.
此时若a2=b1,根据归纳假设,有最优解,否则a2>根据前面“公理”论证有最优解。
当且仅当a数列,b数列元素全部相等时有an+1=b1,已证得,所以an+1>b1,
赢回最慢的马来和齐王最快的马比输的那一场。 2.b1<=b2,an=an+1
交换 b1,b2的位置,
数列
(a1) a2 a3 a4...an an+1
b2 b1 b3 b4...bn (bn+1)
此时 a2>=a1,an>=bn,
对于子表
a2 a3 a4...an
b1 b3 b4...bn
根据前面“公理”或归纳假设,有最优解。
an+1>=b2, 当且仅当b2=b3=b4=..=bn+1时有an+1=b2,这种情况,
a中其它元素<=b1,b2,b3,b4..bn,对于这部分来说,能赢 x盘(x<=n),
假如不拿最慢的马来和齐王最快的马比则拿最快的马来和齐王最快的马比,
此时平一盘,能赢x-1盘,而拿最慢的马来和齐王最快的马 比,输一盘能赢x盘,
总的来说,还是X这个数,没有亏。 3.b1=b2,an<=an+1
4.b1<=b2,an<=an+1证明方法类似,不再重复。 以证得当有n+1匹马的时候,田忌和齐王最快最慢的马速度相等时,
拿最慢的马来和齐王最快的马比有最优解,已知当n=2时成立,
所以对于n>2且为整数(废话,马的只数当然是整数)时也成立。
当n=1时....这个似乎不用讨论.
*/
#include <iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<string.h>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
#define maxn 2600
int a[maxn],b[maxn];
int main()
{
int N,i,j,i1,j1,sum;
while(scanf("%d",&N),N)
{
for(i=; i<N; i++)
scanf("%d",&a[i]);
for(i=; i<N; i++)
scanf("%d",&b[i]);
sort(a,a+N);
sort(b,b+N);
sum=;
for(i=,j=N-,i1=,j1=N-;i1<=j1&&i<=j;)
{ if(a[i]>b[i1])
{
i++;
i1++;
sum++;
}
else if(a[i]<b[i1])
{
i++;
j1--;
sum--;
}
else if(a[j]>b[j1])
{
j--;
j1--;
sum++;
}
else if(a[j]<b[j1])
{
i++;
j1--;
sum--;
}
//现在剩余就是最快的和最慢的都相等的情况,
//则把田忌最慢的和齐王最快的比较
else if(a[i]<b[j1])
{
i++;
j1--;
sum--;
}
else
{
i++;
j1--;
}
}
printf("%d\n",sum*);
}
return ;
}
/*
5
100 99 98 97 96
99 99 98 95 94
600
*/

hdu-1052-Tian Ji -- The Horse Racing(经典)的更多相关文章

  1. HDU 1052 Tian Ji -- The Horse Racing (贪心)(转载有修改)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  2. Hdu 1052 Tian Ji -- The Horse Racing

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  3. HDU 1052 Tian Ji -- The Horse Racing【贪心在动态规划中的运用】

    算法分析: 这个问题很显然可以转化成一个二分图最佳匹配的问题.把田忌的马放左边,把齐王的马放右边.田忌的马A和齐王的B之间,如果田忌的马胜,则连一条权为200的边:如果平局,则连一条权为0的边:如果输 ...

  4. hdu 1052 Tian Ji -- The Horse Racing (田忌赛马)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  5. HDU 1052 Tian Ji -- The Horse Racing(贪心)(2004 Asia Regional Shanghai)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052 Problem Description Here is a famous story in Ch ...

  6. hdu 1052 Tian Ji -- The Horse Racing【田忌赛马】

    题目 这道题主要是需要考虑到各种情况:先对马的速度进行排序,然后分情况考虑: 1.当田忌最慢的马比国王最慢的马快则赢一局 2.当田忌最快的马比国王最快的马快则赢一局 3.当田忌最快的马比国王最快的马慢 ...

  7. HDU 1052 Tian Ji -- The Horse Racing(贪心)

    题目来源:1052 题目分析:题目说的权值匹配算法,有点误导作用,这道题实际是用贪心来做的. 主要就是规则的设定: 1.田忌最慢的马比国王最慢的马快,就赢一场 2.如果田忌最慢的马比国王最慢的马慢,就 ...

  8. 杭州电 1052 Tian Ji -- The Horse Racing(贪婪)

    http://acm.hdu.edu.cn/showproblem.php? pid=1052 Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS ...

  9. hdoj 1052 Tian Ji -- The Horse Racing【田忌赛马】 【贪心】

    思路:先按从小到大排序, 然后从最快的開始比(如果i, j 是最慢的一端, flag1, flag2是最快的一端 ),田的最快的大于king的 则比較,如果等于然后推断,有三种情况: 一:大于则比較, ...

  10. hdu1052 Tian Ji -- The Horse Racing 馋

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1052">http://acm.hdu.edu.cn/showproblem.php ...

随机推荐

  1. spring framework各个版本下载网址

    spring framework各个版本下载网址 http://repo.spring.io/simple/libs-release-local/org/springframework/spring/

  2. echarts-detail--柱状图

    一:柱形图 1.Echarts-柱状图柱图宽度设置-----只需要设置series中的坐标系属性barWidth就可以 /** * 堆积柱状图 * @param xaxisdata x轴:标签(数组) ...

  3. HDU 1806

    http://acm.hdu.edu.cn/showproblem.php?pid=1806 非常玄妙的rmq问题,这个st算法有点神 #include <iostream> #inclu ...

  4. 单机ZooKeeper配置

    1.创建zoo.cfg copy D:\zookeeper3.4.6\conf\zoo_sample.cfg zoo.cfg 修改追加如下内容 dataDir=D:/zookeeper3.4.6/da ...

  5. 利用你的Mission Control--设置快速回到桌面等操作

    第一步:打开系统偏好设置 第二步:进入设置界面点击 Mission Control 第三:Mission Control界面 进入Hot corners(触发角) 第四:设置mac屏幕四个角的快捷键( ...

  6. 高德地图 Android编程中 如何设置使 标记 marker 能够被拖拽

    由于本人对智能手机真心的不太会用,我本人大概是不到3年前才买的智能手机,用以前的索尼爱立信手机比较方便小巧,平时学习工作打个电话发个短信也就够了,出去吃饭一般都是朋友拿手机去弄什么美团团购啥的,然后我 ...

  7. BZOJ4832: [Lydsy1704月赛]抵制克苏恩(记忆化&期望)

    Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 ...

  8. Atcoder Beginner Contest 118

    A: B +/- A 签到题. B: Foods Loved by Everyone 签到题. C: Monsters Battle Royale 怪物的血量一直两两相减,类似于辗转相减法. 可以证明 ...

  9. 部署经验Docker

    从Docker 到Jenkins 到Ansible的部署经验 https://www.cnblogs.com/itdragon/p/10011816.html 工作中,除了开发功能,还负责系统的部署工 ...

  10. NSURLSession学习笔记(二)Session Task

    Session Task分为三种Data Task,Upload Task,Download Task.毫无疑问,Session Task是整个NSURLSession架构的核心目标. 下面写了一个简 ...