hdu-1052-Tian Ji -- The Horse Racing(经典)
/*
hdu-1052
Tian Ji -- The Horse Racing
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14456 Accepted Submission(s): 4125 Problem Description
Here is a famous story in Chinese history. "That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others." "Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from the loser." "Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian's. As a result, each time the king takes six hundred silver dollars from Tian." "Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match." "It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king's regular, and his super beat the king's plus. What a simple trick. And how do you think of Tian Ji, the high ranked official in China?" Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian's horses on one side, and the king's horses on the other. Whenever one of Tian's horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching... However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses --- a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too advanced tool to deal with the problem. In this problem, you are asked to write a program to solve this special case of matching problem. Input
The input consists of up to 50 test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s horses. Then the next n integers on the third line are the speeds of the king’s horses. The input ends with a line that has a single 0 after the last test case. Output
For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars. Sample Input
3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18
0 Sample Output
200
0
0 Source
2004 Asia Regional Shanghai Recommend
JGShining 题意:
田忌赛马 解题报告:
关键在于田忌最慢的马,能先赢就先赢,不能赢就去消耗齐王最快的马,
然后再来考虑最快的马,能先赢就先赢,不能赢说明现在田忌和齐王最快的
马和最慢的马都相等,再来考虑把田忌最慢的马和齐王最快的马比较。
可能更小,但也可能相等。(要按顺序哦,亲。)
1.当田忌最慢的马比齐王最慢的马快,赢一场先
2.当田忌最慢的马比齐王最慢的马慢,和齐王最快的马比,输一场
3.当田忌最快的马比齐王最快的马快时,赢一场先。
4.当田忌最快的马比齐王最快的马慢时,拿最慢的马和齐王最快的马比,输一场。
5.当田忌最快的马和齐王最快的马相等时,拿最慢的马来和齐王最快的马比. //以下是网上的证明 证明:田忌最快的马和齐王最快的马相等时拿最慢的马来和齐王最快的马比有最优解。 1)假设他们有n匹马,看n=2的时候. a1 a2
b1 b2 因为 田忌最快的马和齐王最快的马相等
所以a1=b1,a2=b2 所以这种情况有2种比赛方式,易得这两种方式得分相等。 2)当数列a和数列b全部相等等时(a1=b1,a2=b2...an=bn),
显然最慢的马来和齐王最快的马比有最优解,可以赢n-1长,输1场,找不到更好的方法了。
3)当数列a和数列b元素全部相等时(a1=b1=a2=b2...=an=bn),无法赢也不输。 现在假设n匹马时拿最慢的马来和齐王最快的马比有最优解,
证明有n+1匹马时拿最慢的马来和齐王最快的马比也有最优解。
数列
a1 a2 a3 a4...an an+1
b1 b2 b3 b4...bn bn+1 其中ai>=ai-1,bi>=bi-1 数列a和数列b不全部相等时,拿最慢的马来和齐王最快的马比数列得到数列
(a1) a2 a3 a4...an an+1
b1 b2 b3 b4...bn (bn+1) 分4种情况讨论
1.b1=b2,an=an+1
则有
a2 a3 a4...an
b2 b3 b4...bn
其中a2>=a1,a1=b1,b1=b2,得a2>=b2(此后这种大小关系不再论述),an>=bn.
此时若a2=b1,根据归纳假设,有最优解,否则a2>根据前面“公理”论证有最优解。
当且仅当a数列,b数列元素全部相等时有an+1=b1,已证得,所以an+1>b1,
赢回最慢的马来和齐王最快的马比输的那一场。 2.b1<=b2,an=an+1
交换 b1,b2的位置,
数列
(a1) a2 a3 a4...an an+1
b2 b1 b3 b4...bn (bn+1)
此时 a2>=a1,an>=bn,
对于子表
a2 a3 a4...an
b1 b3 b4...bn
根据前面“公理”或归纳假设,有最优解。
an+1>=b2, 当且仅当b2=b3=b4=..=bn+1时有an+1=b2,这种情况,
a中其它元素<=b1,b2,b3,b4..bn,对于这部分来说,能赢 x盘(x<=n),
假如不拿最慢的马来和齐王最快的马比则拿最快的马来和齐王最快的马比,
此时平一盘,能赢x-1盘,而拿最慢的马来和齐王最快的马 比,输一盘能赢x盘,
总的来说,还是X这个数,没有亏。 3.b1=b2,an<=an+1
4.b1<=b2,an<=an+1证明方法类似,不再重复。 以证得当有n+1匹马的时候,田忌和齐王最快最慢的马速度相等时,
拿最慢的马来和齐王最快的马比有最优解,已知当n=2时成立,
所以对于n>2且为整数(废话,马的只数当然是整数)时也成立。
当n=1时....这个似乎不用讨论.
*/
#include <iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<string.h>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
#define maxn 2600
int a[maxn],b[maxn];
int main()
{
int N,i,j,i1,j1,sum;
while(scanf("%d",&N),N)
{
for(i=; i<N; i++)
scanf("%d",&a[i]);
for(i=; i<N; i++)
scanf("%d",&b[i]);
sort(a,a+N);
sort(b,b+N);
sum=;
for(i=,j=N-,i1=,j1=N-;i1<=j1&&i<=j;)
{ if(a[i]>b[i1])
{
i++;
i1++;
sum++;
}
else if(a[i]<b[i1])
{
i++;
j1--;
sum--;
}
else if(a[j]>b[j1])
{
j--;
j1--;
sum++;
}
else if(a[j]<b[j1])
{
i++;
j1--;
sum--;
}
//现在剩余就是最快的和最慢的都相等的情况,
//则把田忌最慢的和齐王最快的比较
else if(a[i]<b[j1])
{
i++;
j1--;
sum--;
}
else
{
i++;
j1--;
}
}
printf("%d\n",sum*);
}
return ;
}
/*
5
100 99 98 97 96
99 99 98 95 94
600
*/
hdu-1052-Tian Ji -- The Horse Racing(经典)的更多相关文章
- HDU 1052 Tian Ji -- The Horse Racing (贪心)(转载有修改)
Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- Hdu 1052 Tian Ji -- The Horse Racing
Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- HDU 1052 Tian Ji -- The Horse Racing【贪心在动态规划中的运用】
算法分析: 这个问题很显然可以转化成一个二分图最佳匹配的问题.把田忌的马放左边,把齐王的马放右边.田忌的马A和齐王的B之间,如果田忌的马胜,则连一条权为200的边:如果平局,则连一条权为0的边:如果输 ...
- hdu 1052 Tian Ji -- The Horse Racing (田忌赛马)
Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- HDU 1052 Tian Ji -- The Horse Racing(贪心)(2004 Asia Regional Shanghai)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052 Problem Description Here is a famous story in Ch ...
- hdu 1052 Tian Ji -- The Horse Racing【田忌赛马】
题目 这道题主要是需要考虑到各种情况:先对马的速度进行排序,然后分情况考虑: 1.当田忌最慢的马比国王最慢的马快则赢一局 2.当田忌最快的马比国王最快的马快则赢一局 3.当田忌最快的马比国王最快的马慢 ...
- HDU 1052 Tian Ji -- The Horse Racing(贪心)
题目来源:1052 题目分析:题目说的权值匹配算法,有点误导作用,这道题实际是用贪心来做的. 主要就是规则的设定: 1.田忌最慢的马比国王最慢的马快,就赢一场 2.如果田忌最慢的马比国王最慢的马慢,就 ...
- 杭州电 1052 Tian Ji -- The Horse Racing(贪婪)
http://acm.hdu.edu.cn/showproblem.php? pid=1052 Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS ...
- hdoj 1052 Tian Ji -- The Horse Racing【田忌赛马】 【贪心】
思路:先按从小到大排序, 然后从最快的開始比(如果i, j 是最慢的一端, flag1, flag2是最快的一端 ),田的最快的大于king的 则比較,如果等于然后推断,有三种情况: 一:大于则比較, ...
- hdu1052 Tian Ji -- The Horse Racing 馋
转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1052">http://acm.hdu.edu.cn/showproblem.php ...
随机推荐
- 循环中的let和const声明
一.循环中的let声明 每次循环的时候let声明都会创建一个新变量i,并将其初始化为i的当前值,所以循环内部创建的每个函数都能得到属于他们的i的副本. 最初的: for (var i = 0 ; i ...
- ROS机器人操作系统官方教程、源码汇总
1 wiki: http://wiki.ros.org/ 2 code: https://github.com/ ---- 1 基础教程 https://github.com/ros/ros_tut ...
- 从JDK源码角度看Boolean
Java的Boolean类主要作用就是对基本类型boolean进行封装,提供了一些处理boolean类型的方法,比如String类型和boolean类型的转换. 主要实现源码如下: public fi ...
- 原 the app referencesnon-public selectors in payload
摘要 当我们上传验证的时候,出现了the app referencesnon-public selectors in payload/项目名.app/项目:字符 的警告的解决办法 当我们上传验证的时候 ...
- Android编程 EditView 中如何设置最多可以输入的字符数量 属性 android:ems 与 android:maxLength 的区别
最近有一个新的感悟,那就是工作的时候千万不要遇到那种特要人无语的领导,很不幸我现在就遇到了这样的一个领导,说是要给领导认识的一个熟人家的孩子写本科毕业设计预算把我给派过去给本科生写毕业设计,这事情的确 ...
- linux 系统优化+定时任务
安装软件 通过yum安装 自动补全工具:yum completion yum install -y tree bash-completion wget vim find -[TAB] 更改系统的yum ...
- 封装 一下 php sql 的存储语句
function get_insert_sql($obj){ $str1 =""; $str2 =""; foreach($obj as $key => ...
- Python 实现windows后台服务
# -*- coding: utf-8 -*- import sys import win32api import win32con import win32event import win32ser ...
- MVC 页面间的传值
关于MVC页面之间的传值,有多种方式,下面,我们就Html.RenderAction 方式 和 Html.RenderPartial 方式 来给大家分享一下有什么不同. 一.Html.RenderAc ...
- 使用 GitVersion 在编译或持续构建时自动使用语义版本号(Semantic Versioning)
我们在之前谈过 语义版本号(Semantic Versioning),在项目中应用语义版本号能够帮助库的开发者在发布包时表明更多的语义信息.这是趋势,从微软的博客 Versioning NuGet p ...